Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions

We report the synthesis of luminescent, free standing silicon quantum dots by dry and wet etching of silicon and silicon oxide core/shell nanostructures, which are synthesized by controlled oxidation of mechanically milled silicon. Dry and wet etching performed with CF(4) plasma and aqueous HF, respectively, result in the removal of the thick oxide shell of the core/shell nanostructures and affect an additional step of size reduction. HF etch is capable of producing isolated, spherical quantum dots of silicon with dimensions ∼ 2 nm. However, the etching processes introduce unsaturated bonds at the surface of the nanocrystals which are subsequently passivated by oxygen on exposure to ambient atmosphere. The photoluminescence spectra of the colloidal suspensions of these nanocrystals are characterized by double peaks and excitation dependent shift of emission energy. Comparison of the structural, absorption and luminescence characteristics of the samples provides evidence for two competing transition processes--quantum confinement induced widened band gap related transitions and oxide associated interface state mediated transitions. The results enable us to experimentally distinguish between the contributions of the two different transition mechanisms, which has hitherto been a challenging problem.

[1]  B. Schwartz,et al.  Chemical Etching of Silicon IV . Etching Technology , 1959 .

[2]  Louis E. Brus,et al.  A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction , 1993 .

[3]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[4]  B. Korgel,et al.  Colloidal silicon nanorod synthesis. , 2009, Nano letters.

[5]  G. Lucovsky,et al.  Structural interpretation of the vibrational spectra of a-Si: H alloys , 1979 .

[6]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[7]  Nathan S. Lewis,et al.  Size-dependent oxygen-related electronic states in silicon nanocrystals , 2004 .

[8]  Harry A. Atwater,et al.  A Scalable Turbulent Mixing Aerosol Reactor for Oxide-Coated Silicon Nanoparticles , 2005 .

[9]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[10]  Dongmok Whang,et al.  Nanolithography Using Hierarchically Assembled Nanowire Masks , 2003 .

[11]  B. Cheng,et al.  Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix , 2005 .

[12]  F. Huisken,et al.  Effect of passivation and aging on the photoluminescence of silicon nanocrystals , 2001 .

[13]  Electron States and Optical Properties in Confined Silicon Structures , 2003 .

[14]  Ling Xu,et al.  FABRICATION OF SILICON NANOARRAYS BY DIRECT NANOSPHERE LITHOGRAPHY , 2007 .

[15]  G. Lucovsky,et al.  Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition , 1986 .

[16]  G. Hadjisavvas,et al.  Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO2 nanocrystals , 2007 .

[17]  U. Kahler,et al.  Visible light emission from Si nanocrystalline composites via reactive evaporation of SiO , 2001 .

[18]  Ken Okazaki,et al.  Microplasma synthesis of tunable photoluminescent silicon nanocrystals , 2007 .

[19]  Ohno,et al.  Intrinsic origin of visible light emission from silicon quantum wires: Electronic structure and geometrically restricted exciton. , 1992, Physical review letters.

[20]  Yasuo Kimura,et al.  Formation and decomposition of Si hydrides during adsorption of Si 2 H 6 onto Si ( 100 ) ( 2 × 1 ) , 2002 .

[21]  S. Campbell,et al.  Room-temperature atmospheric oxidation of Si nanocrystals after HF etching , 2007 .

[22]  J. S. Fu,et al.  DIRECT EVIDENCE OF QUANTUM CONFINEMENT FROM THE SIZE DEPENDENCE OF THE PHOTOLUMINESCENCE OF SILICON QUANTUM WIRES , 1999 .

[23]  Davidson,et al.  Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0 , 1989, Physical review. B, Condensed matter.

[24]  R. Boukherroub,et al.  Synthesis and photoluminescence properties of silicon nanowires treated by high‐pressure water vapor annealing , 2007 .

[25]  Minoru Fujii,et al.  Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime , 2000 .

[26]  H. R. Philipp,et al.  Optical properties of non-crystalline Si, SiO, SiOx and SiO2 , 1971 .

[27]  A. Muan,et al.  Phase Diagrams for the Systems Si-O and Cr-O , 1968 .

[28]  Kazuo Saitoh,et al.  Visible photoluminescence in Si+‐implanted silica glass , 1994 .

[29]  S. M. Hossain,et al.  Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics , 2009 .

[30]  Wolodymyr Czubatyj,et al.  Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films , 1983 .

[31]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[32]  Engel,et al.  Thermal decomposition of a silicon-fluoride adlayer: Evidence for spatially inhomogeneous removal of a single monolayer of the silicon substrate. , 1988, Physical review. B, Condensed matter.

[33]  Kirk J. Ziegler,et al.  Highly luminescent silicon nanocrystals with discrete optical transitions. , 2001, Journal of the American Chemical Society.

[34]  B. Wagner,et al.  Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting , 2006 .

[35]  Dimitrios Papadimitriou,et al.  ELECTROLUMINESCENT DEVICE BASED ON SILICON NANOPILLARS , 1996 .

[36]  R. Knizikevičius Simulation of Si and SiO2 etching in CF4 plasma , 2008 .

[37]  Eric A. Joseph,et al.  Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide , 2004 .

[38]  W. Tseng,et al.  Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide , 2000 .

[39]  L. Rebohle,et al.  Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements , 2000 .

[40]  Ning-Bew Wong,et al.  Silicon Nanowire Sensors for Bioanalytical Applications: Glucose and Hydrogen Peroxide Detection , 2005 .

[41]  C. Hawker,et al.  Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography , 2006 .

[42]  G. Hadjisavvas,et al.  Structure and energetics of Si nanocrystals embedded in a-SiO2. , 2004, Physical review letters.

[43]  G. Samara,et al.  Optical and Electronic Properties of Si Nanoclusters Synthesized in Inverse Micelles , 1999 .

[44]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[45]  S. Hayashi,et al.  Analysis of surface oxides of gas‐evaporated Si small particles with infrared spectroscopy, high‐resolution electron microscopy, and x‐ray photoemission spectroscopy , 1990 .

[46]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[47]  M. Green,et al.  Blue-violet photoluminescence from colloidal suspension of nanocrystalline silicon in silicon oxide matrix , 2009 .

[48]  Tsu,et al.  Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition. , 1986, Physical review. B, Condensed matter.

[49]  Silicon Nanocrystals: Size Matters , 2005 .

[50]  L. Nesbit,et al.  Annealing characteristics of Si‐rich SiO2 films , 1985 .

[51]  E. J. Mittemeijer,et al.  Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening , 1982 .

[52]  B. Schmidt,et al.  Investigation of Si nanocluster formation in sputter-deposited silicon sub-oxides for nanocluster memory structures , 2003 .

[53]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .

[54]  K. Vahala,et al.  Synthesis of luminescent silicon clusters by spark ablation , 1993 .

[55]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[56]  K. Leo,et al.  A study of the blue photoluminescence emission from thermally-grown, Si+-implanted SiO2 films after short-time annealing , 1996 .

[57]  Yia-Chung Chang,et al.  Aspect-ratio-dependent ultra-low reflection and luminescence of dry-etched Si nanopillars on Si substrate , 2009, Nanotechnology.

[58]  M. Eizenberg,et al.  FTIR and ellipsometry characterization of ultra-thin ALD TaN films , 2007 .

[59]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[60]  Philippe M. Fauchet,et al.  Photoluminescence and electroluminescence from porous silicon , 1996 .

[61]  Shui-Tong Lee,et al.  Highly efficient and stable photoluminescence from silicon nanowires coated with SiC , 2000 .

[62]  David A. Hutt,et al.  Blue photoluminescence and local structure of Si nanostructures embedded in SiO2 matrices , 1995 .

[63]  R. Klie,et al.  Luminescent core-shell nanostructures of silicon and silicon oxide: Nanodots and nanorods , 2010 .