A Highly Parallel Algorithm For Computing The Singular Value Decomposition Using Optical Processing Techniques
暂无分享,去创建一个
[1] J W Goodman,et al. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.
[2] R P Bocker. Matrix multiplication using incoherent optical techniques. , 1974, Applied optics.
[3] B V Kumar. Singular value decomposition using iterative optical processors. , 1983, Applied optics.
[4] H. J. Caulfield,et al. Rapid unbiased bipolar incoherent calculator cube. , 1983 .
[5] I. Herstein,et al. Topics in algebra , 1964 .
[6] Harper J. Whitehouse,et al. Parallel Processing Algorithms And Architectures For Real-Time Signal Processing , 1982, Optics & Photonics.
[7] D Casasent,et al. Iterative color-multiplexed, electro-optical processor. , 1979, Optics letters.
[8] Franklin T. Luk,et al. A Systolic Architecture for the Singular Value Decomposition , 1982 .
[9] Peter S. Guilfoyle. Systolic Acousto-Optic Binary Convolver , 1984 .
[10] David S. Watkins,et al. Understanding the $QR$ Algorithm , 1982 .
[11] F. M. Hall. An Introduction to Abstract Algebra , 1969 .
[12] R A Athale,et al. High accuracy matrix multiplication with outer product optical processor. , 1983, Applied optics.
[13] K. Nichols,et al. Spatial light modulation using electroabsorption in a GaAs charge‐coupled device , 1982 .
[14] H. J. Caulfield,et al. Optical Singular Value Decomposition For The Ax = b Problem , 1983, Other Conferences.
[15] J.S. Harris,et al. GaAs and related heterojunction charge-coupled devices , 1980, IEEE Transactions on Electron Devices.
[16] R P Bocker,et al. Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy. , 1983, Applied optics.