Existence and multiplicity results for perturbed Kirchhoff-type Schrödinger systems in R3

Abstract In this paper we study a class of Kirchhoff-type Schrodinger systems with a positive parameter e . By applying variational methods and the Ljusternik–Schnirelmann category theory, under some suitable conditions we obtain the existence and multiplicity results for the systems when the parameter e is sufficiently small.

[1]  Giovanni Molica Bisci,et al.  Applications of local linking to nonlocal Neumann problems , 2015 .

[2]  T. Bartsch,et al.  Multiple positive solutions for a nonlinear Schrödinger equation , 2000 .

[3]  Giuseppina Autuori,et al.  Kirchhoff systems with dynamic boundary conditions , 2010 .

[4]  Dengfeng Lü A note on Kirchhoff-type equations with Hartree-type nonlinearities , 2014 .

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[7]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[8]  Friedrich Sauvigny,et al.  Partial Differential Equations 2 , 2012 .

[9]  C. O. Alves,et al.  Multiplicity of solutions for elliptic systems via local Mountain Pass method , 2009 .

[10]  Lixin Tian,et al.  Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth , 2012 .

[11]  Giuseppina Autuori,et al.  Global Nonexistence for Nonlinear Kirchhoff Systems , 2010 .

[12]  Chun-Lei Tang,et al.  Existence and multiplicity of solutions for Kirchhoff type equations , 2011 .

[13]  C. O. Alves,et al.  Existence and concentration of positive solutions for a class of gradient systems , 2006 .

[14]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[15]  Elves A. B. Silva,et al.  On a class of coupled elliptic systems in $${\mathbb{R}}^{N}$$ , 2007 .

[16]  M. S. Berger,et al.  Infinite Dimensional Morse Theory and Multiple Solution Problems (K. C. Chang) , 1994, SIAM Rev..

[17]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[18]  Yi He,et al.  Concentrating Bound States for Kirchhoff Type Problems in ℝ3 Involving Critical Sobolev Exponents , 2013, 1306.0122.

[19]  Qiong Liu,et al.  Multiplicity of solutions for a class of quasilinear Schrödinger systems in RN , 2014, Comput. Math. Appl..

[20]  V. Benci,et al.  Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology , 1994 .

[21]  Xian Wu,et al.  High energy solutions of systems of Kirchhoff-type equations on RNRN , 2013, Comput. Math. Appl..

[22]  B. Pellacci,et al.  Positive solutions for a weakly coupled nonlinear Schrödinger system , 2006 .

[23]  G. Figueiredo,et al.  Multiple positive solutions for a quasilinear system of Schrödinger equations , 2008 .

[24]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[25]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[26]  M. Willem Minimax Theorems , 1997 .

[27]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[28]  Giovanni Molica Bisci,et al.  MOUNTAIN PASS SOLUTIONS FOR NONLOCAL EQUATIONS , 2014 .

[29]  Elves A. B. Silva,et al.  On a class of coupled elliptic systems in R N , 2007 .

[30]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[31]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[32]  Fuyi Li,et al.  Existence of a positive solution to Kirchhoff type problems without compactness conditions , 2012 .