Cold gas stripping in satellite galaxies: from pairs to clusters

In this paper we investigate environment driven gas depletion in satellite galaxies, taking full advantage of the atomic hydrogen (HI) spectral stacking technique to quantify the gas content for the entire gas-poor to -rich regime. We do so using a multi-wavelength sample of 10,600 satellite galaxies, selected according to stellar mass (log M$_{\star}$/M$_{\odot}$ $\geq$ 9) and redshift (0.02 $\leq$ z $\leq$ 0.05) from the Sloan Digital Sky Survey, with HI data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. Using key HI-to-stellar mass scaling relations, we present evidence that the gas content of satellite galaxies is, to a significant extent, dependent on the environment in which a galaxy resides. For the first time, we demonstrate that systematic environmental suppression of gas content at both fixed stellar mass and fixed specific star formation rate (sSFR) in satellite galaxies begins in halo masses typical of the group regime (log M$_{h}$/M$_{\odot}$ < 13.5), well before galaxies reach the cluster environment. We also show that environment driven gas depletion is more closely associated to halo mass than local density. Our results are then compared with state-of-the-art semi-analytic models and hydrodynamical simulations and discussed within this framework, showing that more work is needed if models are to reproduce the observations. We conclude that the observed decrease of gas content in the group and cluster environments cannot be reproduced by starvation of the gas supply alone and invoke fast acting processes such as ram-pressure stripping of cold gas to explain this.

[1]  R. Giovanelli,et al.  THE RESOLVE SURVEY ATOMIC GAS CENSUS AND ENVIRONMENTAL INFLUENCES ON GALAXY GAS RESERVOIRS , 2016, 1610.06932.

[2]  R. Bower,et al.  The environmental dependence of H I in galaxies in the EAGLE simulations , 2016, 1606.06288.

[3]  R. Bower,et al.  The EAGLE simulations: atomic hydrogen associated with galaxies , 2016, 1604.06803.

[4]  Qi Guo,et al.  Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models , 2015, 1512.00015.

[5]  C. Baugh,et al.  The evolution of the stellar mass versus halo mass relationship , 2015, 1510.08463.

[6]  R. Bower,et al.  The EAGLE simulations of galaxy formation: the importance of the hydrodynamics scheme , 2015, 1509.05056.

[7]  J. Rosenberg,et al.  THE EFFECT OF HALO MASS ON THE H i CONTENT OF GALAXIES IN GROUPS AND CLUSTERS , 2015, 1509.00497.

[8]  R. Giovanelli,et al.  The effect of structure and star formation on the gas content of nearby galaxies , 2015, 1506.03462.

[9]  T. Quinn,et al.  THE EVOLUTION OF DWARF GALAXY SATELLITES WITH DIFFERENT DARK MATTER DENSITY PROFILES IN THE ERISMOD SIMULATIONS. I. THE EARLY INFALLS , 2015, 1506.02140.

[10]  R. Morganti,et al.  From star-forming galaxies to AGN: The global HI content from a stacking experiment , 2015, 1505.03622.

[11]  R. Giovanelli,et al.  Spectroscopic confusion: its impact on current and future extragalactic H i surveys , 2015, 1502.07359.

[12]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[13]  G. Mamon,et al.  maggie: Models and Algorithms for Galaxy Groups, Interlopers and Environment , 2014, 1412.3364.

[14]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[15]  J. Kollmeier,et al.  The impact of environment and mergers on the H i content of galaxies in hydrodynamic simulations , 2014, 1408.2531.

[16]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[17]  C. Baugh,et al.  The origin of the atomic and molecular gas contents of early-type galaxies – I. A new test of galaxy formation physics , 2014, 1405.0016.

[18]  Carlton M. Baugh,et al.  How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model , 2013, 1309.7057.

[19]  Durham,et al.  The evolution of the star-forming sequence in hierarchical galaxy formation models. , 2014, 1403.1585.

[20]  E. Lau,et al.  Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey , 2013, 1312.7417.

[21]  R. Somerville,et al.  Evolution of the atomic and molecular gas content of galaxies , 2013, 1308.6764.

[22]  K. Hess,et al.  EVOLUTION IN THE H i GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH , 2013, 1308.4646.

[23]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VIII. Final data release. The effect of group environment on the gas content of massive galaxies , 2013, 1308.1676.

[24]  D. Weinberg,et al.  The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.

[25]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[26]  Epping,et al.  The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies , 2012, 1204.0430.

[27]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[28]  D. Wilman,et al.  THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE , 2012 .

[29]  T. Jeltema,et al.  HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP , 2012, 1201.1291.

[30]  Timothy A. Davis,et al.  The ATLAS3D project - XIII. Mass and morphology of H I in early-type galaxies as a function of environment , 2011, 1111.4241.

[31]  E. Lau,et al.  Cross identification between X-ray and Optical Clusters of Galaxies in the SDSS DR7 Field , 2011, 1110.1987.

[32]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[33]  R. Giovanelli,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY: THE α.40 H i SOURCE CATALOG, ITS CHARACTERISTICS AND THEIR IMPACT ON THE DERIVATION OF THE H i MASS FUNCTION , 2011, 1109.0027.

[34]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[35]  M. Carollo,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS , 2011, 1106.2546.

[36]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[37]  L. Cortese,et al.  The effect of the environment on the Hi scaling relations , 2011, 1103.5889.

[38]  R. Giovanelli,et al.  ALFALFA H i data stacking – I. Does the bulge quench ongoing star formation in early-type galaxies? , 2010, 1009.4309.

[39]  C. Conselice,et al.  How does galaxy environment matter? The relationship between galaxy environments, colour and stellar mass at 0.4 < z < 1 in the Palomar/DEEP2 survey , 2010, 1009.3189.

[40]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey , 2017 .

[41]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[42]  Bernd Vollmer,et al.  VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I. THE ATLAS AND THE H i PROPERTIES , 2009 .

[43]  G. Bryan,et al.  THE TAIL OF THE STRIPPED GAS THAT COOLED: H i, Hα, AND X-RAY OBSERVATIONAL SIGNATURES OF RAM PRESSURE STRIPPING , 2009, 0909.3097.

[44]  S. Brough,et al.  Southern GEMS groups II: HI distribution, mass functions and HI deficient galaxies , 2009, 0909.0568.

[45]  C. Baugh,et al.  The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models , 2009, 0908.1396.

[46]  K. Bekki Ram-pressure stripping of halo gas in disc galaxies: implications for galactic star formation in different environments , 2009, 0907.4409.

[47]  B. Schmidt,et al.  The H i gas content of galaxies around Abell 370, a galaxy cluster at z= 0.37 , 2009, 0907.1416.

[48]  S. Rawlings,et al.  SIMULATION OF THE COSMIC EVOLUTION OF ATOMIC AND MOLECULAR HYDROGEN IN GALAXIES , 2009 .

[49]  Greg L. Bryan,et al.  GAS STRIPPING IN SIMULATED GALAXIES WITH A MULTIPHASE INTERSTELLAR MEDIUM , 2009, 0901.2115.

[50]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[51]  F. Fontanot,et al.  The correlation of star formation quenching with internal galaxy properties and environment , 2008, 0810.2794.

[52]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[53]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[54]  S. Bamford,et al.  The Relation between Star Formation, Morphology, and Local Density in High-Redshift Clusters and Groups , 2008, 0805.1145.

[55]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[56]  A. V. D. Wel The Dependence of Galaxy Morphology and Structure on Environment and Stellar Mass , 2008, 0801.1995.

[57]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[58]  H. Mo,et al.  Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics , 2007, 0710.5096.

[59]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[60]  Durham,et al.  Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters , 2007, 0710.0964.

[61]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[62]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history , 2007, 0706.4089.

[63]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[64]  J. Wadsley,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[65]  G. Bryan,et al.  Environmentally Driven Evolution of Simulated Cluster Galaxies , 2007, 0709.1720.

[66]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[67]  B. Madore,et al.  The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569 , 2006, astro-ph/0609020.

[68]  J. Hester Ram Pressure Stripping in Clusters and Groups , 2006, astro-ph/0610088.

[69]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[70]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[71]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[72]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[73]  Joachim Stadel,et al.  Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas , 2005, astro-ph/0504277.

[74]  V. Debattista,et al.  Morphological evolution of discs in clusters , 2005 .

[75]  L. Guzzo,et al.  The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey. V. The cluster catalogue , 2004, astro-ph/0405546.

[76]  Y. Jing,et al.  A halo-based galaxy group finder: calibration and application to the 2dFGRS , 2004, astro-ph/0405234.

[77]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[78]  F. Brighenti,et al.  Three-dimensional simulations of the interstellar medium in dwarf galaxies - I. Ram pressure stripping , 2003, astro-ph/0309026.

[79]  L. Mayer,et al.  On the life and death of satellite haloes , 2003, astro-ph/0301271.

[80]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[81]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[82]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[83]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[84]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[85]  R. Giacconi,et al.  The Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey. I. X-Ray Properties of Clusters Detected as Extended X-Ray Sources , 2000, astro-ph/0003219.

[86]  J. Huchra,et al.  The ROSAT Brightest Cluster Sample - IV. The extended sample , 2000, astro-ph/0003191.

[87]  M. Colpi,et al.  Dynamical Friction and the Evolution of Satellites in Virialized Halos: The Theory of Linear Response , 1999, astro-ph/9907088.

[88]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[89]  R. Bower,et al.  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[90]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[91]  G. Lake,et al.  On the survival and destruction of spiral galaxies in clusters , 1998, astro-ph/9811127.

[92]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[93]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[94]  M. Weinberg Dynamics of an interacting luminous disc, dark halo and satellite companion , 1997, astro-ph/9707189.

[95]  G. Lake,et al.  Morphological Transformation from Galaxy Harassment , 1997, astro-ph/9701211.

[96]  S. McGaugh,et al.  Gas content and star formation thresholds in the evolution of spiral galaxies , 1996, astro-ph/9612019.

[97]  M. Steinmetz,et al.  Two-body heating in numerical galaxy formation experiments , 1996, astro-ph/9609021.

[98]  R. Giovanelli,et al.  A 21 CM survey of the Pisces-Perseus supercluster. II. The declination zone +21.5 to +27.5 degrees. , 1985 .

[99]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[100]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[101]  M. Schmidt The Rate of Star Formation , 1959 .

[102]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[103]  B. Whitmore,et al.  On the interpretation of the morphology-density relation for galaxies in clusters , 1991 .

[104]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .