Online Companion Caching

This paper is concerned with online caching algorithms for the (n, k)-companion cache, defined by Brehob et al. (J. Scheduling 6 (2003) 149). In this model the cache is composed of two components: a k-way set-associative cache and a companion fully associative cache of size n. We show that the deterministic competitive ratio for this problem is (n + 1)(k + 1) - 1, and the randomized competitive ratio is O(log n log k) and Ω(log n + log k).

[1]  Amos Fiat,et al.  Online Companion Caching , 2002, ESA.

[2]  Norman P. Jouppi,et al.  Improving direct-mapped cache performance by the addition of a small fully-associative cache and pre , 1990, ISCA 1990.

[3]  Laszlo A. Belady,et al.  A Study of Replacement Algorithms for Virtual-Storage Computer , 1966, IBM Syst. J..

[4]  Amos Fiat,et al.  Competitive Paging Algorithms , 1991, J. Algorithms.

[5]  Marek Chrobak,et al.  Competitive analysis of randomized paging algorithms , 2000, Theor. Comput. Sci..

[6]  Richard J. Enbody,et al.  On-line Restricted Caching , 2001, SODA '01.

[7]  Lyle A. McGeoch,et al.  A strongly competitive randomized paging algorithm , 1991, Algorithmica.

[8]  Richard J. Enbody,et al.  Optimal replacement is NP-hard for nonstandard caches , 2004, IEEE Transactions on Computers.

[9]  Anna R. Karlin,et al.  Competitive snoopy caching , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[11]  André Seznec,et al.  A case for two-way skewed-associative caches , 1993, ISCA '93.