Approximating fractional hypertree width

Fractional hypertree width is a hypergraph measure similar to tree width and hypertree width. Its algorithmic importance comes from the fact that, as shown in previous work, Constraint Satisfaction Problems (CSP) and various problems in database theory are polynomial-time solvable if the input contains a bounded-width fractional hypertree decomposition of the hypergraph of the constraints. In this article, we show that for every fixed w ≥ 1, there is a polynomial-time algorithm that, given a hypergraph H with fractional hypertree width at most w, computes a fractional hypertree decomposition of width O(w3) for H. This means that polynomial-time algorithms relying on bounded-width fractional hypertree decompositions no longer need to be given a decomposition explicitly in the input, since an appropriate decomposition can be computed in polynomial time. Therefore, if H is a class of hypergraphs with bounded fractional hypertree width, then a CSP restricted to instances whose structure is in H is polynomial-time solvable. This makes bounded fractional hypertree width the most general known hypergraph property that makes CSP, Boolean conjunctive queries, and conjunctive query containment polynomial-time solvable.

[1]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[2]  Dániel Marx Tractable Structures for Constraint Satisfaction with Truth Tables , 2009, STACS.

[3]  Sue Whitesides,et al.  An Algorithm for Finding Clique Cut-Sets , 1981, Inf. Process. Lett..

[4]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[5]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[6]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[7]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[8]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[9]  Martin Grohe,et al.  The Structure of Tractable Constraint Satisfaction Problems , 2006, MFCS.

[10]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[11]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[12]  Umesh V. Vazirani,et al.  Quantum Algorithms for Hidden Nonlinear Structures , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[13]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[14]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[15]  Georg Gottlob,et al.  Hypertree width and related hypergraph invariants , 2007, Eur. J. Comb..

[16]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[17]  Georg Gottlob,et al.  Hypertree Decompositions: Structure, Algorithms, and Applications , 2005, WG.

[18]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[19]  Georg Gottlob,et al.  Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems , 2007, Comput. J..

[20]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[21]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[22]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[23]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[24]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[25]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[26]  M. Golumbic CHAPTER 3 – Perfect Graphs , 1980 .

[27]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[28]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[29]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[30]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[31]  Thomas Schwentick,et al.  When is the evaluation of conjunctive queries tractable? , 2001, STOC '01.

[32]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[33]  Dániel Marx Tractable Structures for Constraint Satisfaction with Truth Tables , 2009, Theory of Computing Systems.

[34]  Martin Grohe,et al.  Constraint solving via fractional edge covers , 2006, SODA 2006.

[35]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .

[36]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[37]  Thomas Schwentick,et al.  Generalized hypertree decompositions: np-hardness and tractable variants , 2007, PODS '07.

[38]  Hubie Chen,et al.  Constraint satisfaction with succinctly specified relations , 2010, J. Comput. Syst. Sci..

[39]  Petr A. Golovach,et al.  Approximating Acyclicity Parameters of Sparse Hypergraphs , 2008, STACS.

[40]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[41]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .