The 5′-phosphate enhances the DNA-binding and exonuclease activities of human mitochondrial genome maintenance exonuclease 1 (MGME1)

[1]  H. Fuchs,et al.  Mice lacking the mitochondrial exonuclease MGME1 develop inflammatory kidney disease with glomerular dysfunction , 2022, PLoS genetics.

[2]  J. McGouran,et al.  5’‐Phosphorylation Increases the Efficacy of Nucleoside Inhibitors of the DNA Repair Enzyme SNM1A , 2021, ChemMedChem.

[3]  G. Shadel,et al.  Mitochondrial DNA: cellular genotoxic stress sentinel. , 2021, Trends in biochemical sciences.

[4]  C. Kim,et al.  De Novo Development of mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans , 2021, Genes.

[5]  W. Copeland,et al.  Consequences of compromised mitochondrial genome integrity. , 2020, DNA repair.

[6]  Linlin Zhao,et al.  Mitochondrial DNA Damage: Prevalence, Biological Consequence and Emerging Pathways. , 2020, Chemical research in toxicology.

[7]  H. Wilhelm,et al.  Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy , 2019, The Journal of clinical investigation.

[8]  E. Bertini,et al.  SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. , 2019, The Journal of clinical investigation.

[9]  Marni J. Falk,et al.  Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes , 2019, PloS one.

[10]  M. Votruba,et al.  SSBP1 mutations in dominant optic atrophy with variable retinal degeneration , 2019, Annals of neurology.

[11]  Linlin Zhao,et al.  Divalent Cations Alter the Rate-Limiting Step of PrimPol-Catalyzed DNA Elongation. , 2019, Journal of molecular biology.

[12]  J. Gan,et al.  Structural insights into DNA degradation by human mitochondrial nuclease MGME1 , 2018, Nucleic acids research.

[13]  C. Moraes,et al.  The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions , 2018, Nature Communications.

[14]  Pedro Rebelo-Guiomar,et al.  Linear mitochondrial DNA is rapidly degraded by components of the replication machinery , 2018, Nature Communications.

[15]  M. Falkenberg,et al.  Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria , 2018, Nature Communications.

[16]  Robert W. Taylor,et al.  Recent Advances in Mitochondrial Disease. , 2017, Annual review of genomics and human genetics.

[17]  J. Lee,et al.  A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease , 2017, Nature Communications.

[18]  C. Burrows,et al.  4n-1 Is a "Sweet Spot" in DNA i-Motif Folding of 2'-Deoxycytidine Homopolymers. , 2017, Journal of the American Chemical Society.

[19]  A. Shamas-Din,et al.  Characterizing the mitochondrial DNA polymerase gamma interactome by BioID identifies Ruvbl2 localizes to the mitochondria. , 2017, Mitochondrion.

[20]  C. Gustafsson,et al.  Maintenance and Expression of Mammalian Mitochondrial DNA. , 2016, Annual review of biochemistry.

[21]  T. Ceska,et al.  Direct observation of DNA threading in flap endonuclease complexes , 2016, Nature Structural &Molecular Biology.

[22]  Matthew J. Young,et al.  Human mitochondrial DNA replication machinery and disease. , 2016, Current opinion in genetics & development.

[23]  C. Gustafsson,et al.  MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication , 2016, Nucleic acids research.

[24]  Gregory A. Farnum,et al.  Mapping 136 pathogenic mutations into functional modules in human DNA polymerase γ establishes predictive genotype-phenotype correlations for the complete spectrum of POLG syndromes. , 2014, Biochimica et biophysica acta.

[25]  M. Minczuk,et al.  Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease , 2014, Human molecular genetics.

[26]  Katie A. Wilson,et al.  DNA–protein π-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar , 2014, Nucleic acids research.

[27]  S. Ledoux,et al.  The maintenance of mitochondrial DNA integrity--critical analysis and update. , 2013, Cold Spring Harbor perspectives in biology.

[28]  N. Bresolin,et al.  Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. , 2013, American journal of human genetics.

[29]  K. Ginalski,et al.  Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels , 2013, Nucleic acids research.

[30]  V. Mootha,et al.  Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease , 2013, Nature Genetics.

[31]  M. Wyatt,et al.  Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. , 2006, Chemical research in toxicology.

[32]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[33]  G. Comi,et al.  Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria , 2001, Nature Genetics.

[34]  T. Ceska,et al.  A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease , 1996, Nature.