Attenuation of the Induction of TLRs 2 and 4 Mitigates Inflammation and Promotes Neurological Recovery After Focal Cerebral Ischemia

[1]  Weiping Liu,et al.  High mobility group box-1 (HMGB1) antagonist BoxA suppresses status epilepticus-induced neuroinflammatory responses associated with Toll-like receptor 2/4 down-regulation in rats , 2019, Brain Research.

[2]  J. C. Baayen,et al.  Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood‐brain barrier dysfunction and seizure progression , 2018, Epilepsia.

[3]  J. Klopfenstein,et al.  Prevention of the Severity of Post-ischemic Inflammation and Brain Damage by Simultaneous Knockdown of Toll-like Receptors 2 and 4 , 2018, Neuroscience.

[4]  A. Brewster,et al.  Status Epilepticus Triggers Time-Dependent Alterations in Microglia Abundance and Morphological Phenotypes in the Hippocampus , 2017, Front. Neurol..

[5]  J. Klopfenstein,et al.  Mesenchymal Stem Cell Treatment Prevents Post-Stroke Dysregulation of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases , 2017, Cellular Physiology and Biochemistry.

[6]  L. Cui,et al.  Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury , 2017, Neurological research.

[7]  Ping Zhang,et al.  N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[8]  D. Petrović-Djergović,et al.  Inflammatory Disequilibrium in Stroke. , 2016, Circulation research.

[9]  G. Trendelenburg,et al.  Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application , 2016, PloS one.

[10]  S. Maier,et al.  Stress Induces the Danger-Associated Molecular Pattern HMGB-1 in the Hippocampus of Male Sprague Dawley Rats: A Priming Stimulus of Microglia and the NLRP3 Inflammasome , 2015, The Journal of Neuroscience.

[11]  M. Stenzel-Poore,et al.  Toll-like receptors and ischemic brain injury. , 2014, Journal of neuropathology and experimental neurology.

[12]  Guohong Li,et al.  Role of Inflammation and Its Mediators in Acute Ischemic Stroke , 2013, Journal of Cardiovascular Translational Research.

[13]  Sang Yoon Lee,et al.  Phosphatidylinositol 4-Phosphate 5-Kinase α Facilitates Toll-like Receptor 4-mediated Microglial Inflammation through Regulation of the Toll/Interleukin-1 Receptor Domain-containing Adaptor Protein (TIRAP) Location* , 2013, The Journal of Biological Chemistry.

[14]  T. Iwama,et al.  Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia , 2012, Scientific Reports.

[15]  R. Leak,et al.  Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia , 2012, Stroke.

[16]  Y. Weng,et al.  Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury , 2012, Journal of Neuroinflammation.

[17]  K. Lambertsen,et al.  Inflammatory Cytokines in Experimental and Human Stroke , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  A. Bar-Or,et al.  Comparison of polarization properties of human adult microglia and blood‐derived macrophages , 2012, Glia.

[19]  A. Yoshimura,et al.  Post-Ischemic Inflammation in the Brain , 2012, Front. Immun..

[20]  Qing-Wu Yang,et al.  Toll-like receptors in cerebral ischemic inflammatory injury , 2011, Journal of Neuroinflammation.

[21]  A. Vezzani,et al.  Interleukin‐1 type 1 receptor/Toll‐like receptor signalling in epilepsy: the importance of IL‐1beta and high‐mobility group box 1 , 2011, Journal of internal medicine.

[22]  T. Sobrino,et al.  Toll-like receptors 2 and 4 in ischemic stroke: Outcome and therapeutic values , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  S. Akira,et al.  Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia , 2010, Neuroscience.

[24]  Chun-Hua Wang,et al.  Spatio-Temporal Distribution of Inflammatory Reaction and Expression of TLR2/4 Signaling Pathway in Rat Brain Following Permanent Focal Cerebral Ischemia , 2010, Neurochemical Research.

[25]  E. Aronica,et al.  Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures , 2010, Nature Medicine.

[26]  Jessica K. Alexander,et al.  Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord , 2009, The Journal of Neuroscience.

[27]  J. Kalbfleisch,et al.  Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice , 2009, Brain Research.

[28]  N. Villamor,et al.  Monocyte Subtypes Predict Clinical Course and Prognosis in Human Stroke , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  Sung-Chun Tang,et al.  Toll-like receptors in neurodegeneration , 2009, Brain Research Reviews.

[30]  S. L. Stevens,et al.  Inflammation and the Emerging Role of the Toll-Like Receptor System in Acute Brain Ischemia , 2009, Stroke.

[31]  H. Bluethmann,et al.  Microglia Protect Neurons against Ischemia by Synthesis of Tumor Necrosis Factor , 2009, The Journal of Neuroscience.

[32]  M. Mattson,et al.  Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid β-peptide and the membrane lipid peroxidation product 4-hydroxynonenal , 2008, Experimental Neurology.

[33]  Qing-Wu Yang,et al.  Upregulated Expression of Toll-Like Receptor 4 in Monocytes Correlates with Severity of Acute Cerebral Infarction , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  M. Stenzel-Poore,et al.  Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. , 2008, Current opinion in pharmacology.

[35]  G. Trendelenburg Acute Neurodegeneration and the Inflammasome: Central Processor for Danger Signals and the Inflammatory Response? , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[37]  R. Nitsch,et al.  Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia , 2007, Journal of Neuroimmunology.

[38]  M. Mattson,et al.  Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits , 2007, Proceedings of the National Academy of Sciences.

[39]  H. Lehrach,et al.  TLR2 has a detrimental role in mouse transient focal cerebral ischemia. , 2007, Biochemical and biophysical research communications.

[40]  G. Gowing,et al.  Selective Ablation of Proliferating Microglial Cells Exacerbates Ischemic Injury in the Brain , 2007, The Journal of Neuroscience.

[41]  Jie Cui,et al.  Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. , 2007, Biochemical and biophysical research communications.

[42]  Grace H. Kim,et al.  Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia , 2007, Nature Protocols.

[43]  F. Mégret,et al.  The innate immune facet of brain , 2007, Journal of Molecular Neuroscience.

[44]  Y. Kuroki,et al.  Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors , 2007, BMC Genomics.

[45]  R. Sidman,et al.  Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis , 2006, The Journal of cell biology.

[46]  I. Bechmann,et al.  A Mechanism for Neurodegeneration Induced by Group B Streptococci through Activation of the TLR2/MyD88 Pathway in Microglia1 , 2006, The Journal of Immunology.

[47]  R. Medzhitov,et al.  Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling , 2006, Cell.

[48]  K. Hossmann Pathophysiology and Therapy of Experimental Stroke , 2006, Cellular and Molecular Neurobiology.

[49]  Á. Chamorro,et al.  The harms and benefits of inflammatory and immune responses in vascular disease. , 2006, Stroke.

[50]  J. Antel,et al.  TLR Signaling Tailors Innate Immune Responses in Human Microglia and Astrocytes1 , 2005, The Journal of Immunology.

[51]  A. Kaur,et al.  The evolution of vertebrate Toll-like receptors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Y. Samson,et al.  [Inflammation and ischaemic stroke: current status and future perspectives]. , 2005, Revue neurologique.

[53]  S. Miller,et al.  Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs1 , 2004, The Journal of Immunology.

[54]  I. Marriott,et al.  Cultured astrocytes express toll‐like receptors for bacterial products , 2003, Glia.

[55]  R. Ravid,et al.  Broad Expression of Toll‐Like Receptors in the Human Central Nervous System , 2002, Journal of neuropathology and experimental neurology.

[56]  A. Shuaib,et al.  Involvement of inflammatory cytokines in central nervous system injury , 2002, Progress in Neurobiology.

[57]  T. Giese,et al.  Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides1 , 2002, The Journal of Immunology.

[58]  M. Chopp,et al.  Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats , 2001, Stroke.

[59]  J. Sivenius,et al.  An alpha(2)-adrenergic antagonist, atipamezole, facilitates behavioral recovery after focal cerebral ischemia in rats. , 2001, Neuropharmacology.

[60]  Constantin E. Orfanos,et al.  Alternative versus Classical Activation of Macrophages , 2000, Pathobiology.

[61]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[62]  F. Barone,et al.  Inflammatory Mediators and Stroke: New Opportunities for Novel Therapeutics , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[63]  K. Tracey,et al.  TUMOR NECROSIS FACTOR IS A BRAIN DAMAGING CYTOKINE IN CEREBRAL ISCHEMIA , 1997, Shock.

[64]  R. Willette,et al.  Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. , 1997, Stroke.

[65]  M. Mattson,et al.  Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Y. Itoyama,et al.  Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. , 1995, Stroke.

[67]  C. Nathan,et al.  Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. , 1988, Journal of immunology.