Optimal quadrature for Haar wavelet spaces

This article considers the error of the scrambled equidistribution quadrature rules in the worst-case, random-case, and average-case settings. The underlying space of integrands is a Hilbert space of multidimensional Haar wavelet series, Hwav. The asymptotic orders of the errors are derived for the case of the scrambled (λ, t, m, s)-nets and (t, s)-sequences. These rules are shown to have the best asymptotic convergence rates for any random quadrature rule for the space of integrands Hwav.

[1]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[2]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[3]  Rong-Xian Yue VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .

[4]  Harald Niederreiter,et al.  The Microstructure of (t, m, s)-Nets , 2001, J. Complex..

[5]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[6]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[7]  Wolfgang Ch. Schmid,et al.  Multivariate Walsh series, digital nets and quasi-Monte Carlo integration , 1995 .

[8]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[9]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[10]  Harald Niederreiter,et al.  Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .

[11]  Gerhard Larcher,et al.  BASE CHANGE PROBLEMS FOR GENERALIZED WALSH SERIES AND MULTIVARIATE NUMERICAL INTEGRATION , 1999 .

[12]  Art B. Owen,et al.  Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .

[13]  K. Entacher Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .

[14]  Gerhard Larcher,et al.  Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .

[15]  Karl Entacher,et al.  Quasi-monte carlo methods for numerical integration of multivariate Haar series , 1997 .

[16]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[17]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[18]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[19]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[20]  Rong-Xian Yue,et al.  On the variance of quadrature over scrambled nets and sequences , 1999 .

[21]  Gerhard Larcher,et al.  On the numerical integration of high-dimensional Walsh-series by quasi-Monte Carlo methods , 1995 .

[22]  Fred J. Hickernell,et al.  The Price of Pessimism for Multidimensional Quadrature , 2001, J. Complex..

[23]  Fred J. Hickernell,et al.  Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..

[24]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[25]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[26]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[27]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[28]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .