Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  R. Bonert,et al.  Characterization of double-layer capacitors (DLCs) for power electronics applications , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[5]  Andrew G. Glen,et al.  APPL , 2001 .

[6]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[7]  Wim Turkenburg,et al.  A solar powered wireless computer mouse: industrial design concepts , 2009 .

[8]  Luca Benini,et al.  Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Christoph J. Brabec,et al.  Organic photovoltaics for low light applications , 2011 .

[10]  Eric Goralnick,et al.  Moses , 2011, Annals of Internal Medicine.

[11]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[12]  Martijn Lenes,et al.  Origin of the dark-current ideality factor in polymer:fullerene bulk heterojunction solar cells , 2011 .

[13]  Subodh G. Mhaisalkar,et al.  Printable photo-supercapacitor using single-walled carbon nanotubes , 2011 .

[14]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[15]  Zhenbo Cai,et al.  An Integrated "energy wire" for both photoelectric conversion and energy storage. , 2012, Angewandte Chemie.

[16]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[17]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[18]  L. Reindl,et al.  Maximum efficiencies of indoor photovoltaic devices , 2013, IEEE Journal of Photovoltaics.

[19]  M. Halik,et al.  ITO‐Free and Fully Solution‐Processed Semitransparent Organic Solar Cells with High Fill Factors , 2013 .

[20]  Hongrui Jiang,et al.  Dye‐Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode , 2013, Advanced materials.

[21]  Li Li,et al.  An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film , 2013 .

[22]  Erik M. J. Johansson,et al.  Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor , 2013 .

[23]  Tao Chen,et al.  Integrated devices to realize energy conversion and storage simultaneously. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  K. Alameh,et al.  High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[25]  M. Schwab,et al.  Inkjet-printed energy storage device using graphene/polyaniline inks , 2014 .

[26]  A. Ostfeld,et al.  Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics , 2014 .

[27]  Peter Veelaert,et al.  A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications , 2014 .

[28]  Mikkel Jørgensen,et al.  Failure Modes and Fast Repair Procedures in High Voltage Organic Solar Cell Installations , 2014 .

[29]  Hyun Wook Kang,et al.  Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application , 2014 .

[30]  G. Shen,et al.  Integrated Photo‐supercapacitor Based on Bi‐polar TiO2 Nanotube Arrays with Selective One‐Side Plasma‐Assisted Hydrogenation , 2014 .

[31]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[32]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[33]  Pedro Pinho,et al.  Smart Surfaces: Large Area Electronics Systems for Internet of Things Enabled by Energy Harvesting , 2014, Proceedings of the IEEE.

[34]  Bernard Kippelen,et al.  All-plastic solar cells with a high photovoltaic dynamic range , 2014 .

[35]  Q. Zhang,et al.  Composite carbon-based ionic liquid supercapacitor for high-current micro devices , 2014 .

[36]  Christopher M. Proctor,et al.  Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells , 2015 .

[37]  Martin Kasemann,et al.  Evaluating Crystalline Silicon Solar Cells at Low Light Intensities Using Intensity-Dependent Analysis of I–V Parameters , 2015, IEEE Journal of Photovoltaics.

[38]  Xiong Gong,et al.  Self‐Powered Electronics by Integration of Flexible Solid‐State Graphene‐Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells , 2015 .

[39]  Hassaan Khaliq Qureshi,et al.  Energy management in Wireless Sensor Networks: A survey , 2015, Comput. Electr. Eng..

[40]  Andrew S. Westover,et al.  All silicon electrode photocapacitor for integrated energy storage and conversion. , 2015, Nano letters.

[41]  R. Gwoziecki,et al.  Impact of Blend Morphology on Interface State Recombination in Bulk Heterojunction Organic Solar Cells , 2015 .

[42]  Adrien Pierre,et al.  High Detectivity All‐Printed Organic Photodiodes , 2015, Advanced materials.

[43]  G. Amaratunga,et al.  Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device. , 2015, Small.

[44]  F. Krebs,et al.  Over 2 Years of Outdoor Operational and Storage Stability of ITO‐Free, Fully Roll‐to‐Roll Fabricated Polymer Solar Cell Modules , 2015 .

[45]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.