Microstructural and functional gradients are increasingly dissociated in transmodal cortices

While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure–function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high–resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto–parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.

[1]  H. Barbas,et al.  The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex , 2019, Brain Structure and Function.

[2]  Ben D. Fulcher,et al.  Multimodal gradients across mouse cortex , 2018, Proceedings of the National Academy of Sciences.

[3]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[4]  K. Zilles,et al.  Cortical Gradients and Laminar Projections in Mammals , 2018, Trends in Neurosciences.

[5]  Lianne H. Scholtens,et al.  Multiscale examination of cytoarchitectonic similarity and human brain connectivity , 2018, Network Neuroscience.

[6]  Tim B. Dyrby,et al.  Topological principles and developmental algorithms might refine diffusion tractography , 2018, Brain Structure and Function.

[7]  Reinder Vos de Wael,et al.  Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding , 2018, Proceedings of the National Academy of Sciences.

[8]  Daniel S. Margulies,et al.  Macroscale Cortical Organization and a Default-Like Transmodal Apex Network in the Marmoset Monkey , 2018, bioRxiv.

[9]  A. Bernacchia,et al.  Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography , 2018, Nature Neuroscience.

[10]  Alan C. Evans,et al.  Mapping Cortical Laminar Structure in the 3D BigBrain , 2018, Cerebral cortex.

[11]  Yoed N. Kenett,et al.  Robust prediction of individual creative ability from brain functional connectivity , 2018, Proceedings of the National Academy of Sciences.

[12]  Peter B. Jones,et al.  Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation , 2017, Neuron.

[13]  Michael Moutoussis,et al.  Cohort Profile Cohort profile : The NSPN 2400 Cohort : a developmental sample supporting the Wellcome Trust NeuroScience in Psychiatry Network , 2017 .

[14]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[15]  David K. Menon,et al.  Default mode contributions to automated information processing , 2017, Proceedings of the National Academy of Sciences.

[16]  Yohan J. John,et al.  Mirror trends of plasticity and stability indicators in primate prefrontal cortex , 2017, The European journal of neuroscience.

[17]  Reinder Vos de Wael,et al.  Effects of Tissue-Specific Functional Magnetic Resonance Imaging Signal Regression on Resting-State Functional Connectivity , 2017, Brain Connect..

[18]  Neda Bernasconi,et al.  The spectrum of structural and functional network alterations in malformations of cortical development , 2017, Brain : a journal of neurology.

[19]  Nicola Palomero-Gallagher,et al.  Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas , 2017, NeuroImage.

[20]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[21]  Kevin Murphy,et al.  Towards a consensus regarding global signal regression for resting state functional connectivity MRI , 2017, NeuroImage.

[22]  B. T. Thomas Yeo,et al.  A Spotlight on Bridging Microscale and Macroscale Human Brain Architecture , 2017, Neuron.

[23]  E. T. Bullmore,et al.  Structural Covariance Networks in Children with Autism or ADHD , 2017, bioRxiv.

[24]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[25]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[26]  Claus C. Hilgetag,et al.  A Predictive Structural Model of the Primate Connectome , 2015, Scientific Reports.

[27]  E. Formisano,et al.  Reproducibility and Reliability of Quantitative and Weighted T1 and T2∗ Mapping for Myelin-Based Cortical Parcellation at 7 Tesla , 2016, Front. Neuroanat..

[28]  Daniel S. Margulies,et al.  Gradients of connectivity distance are anchored in primary cortex , 2016, Brain Structure and Function.

[29]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[30]  Peter B. Jones,et al.  Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[32]  Claus C. Hilgetag,et al.  Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse , 2015, Brain Structure and Function.

[33]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[34]  Thomas Lippert,et al.  Workflows for Ultra-High Resolution 3D Models of the Human Brain on Massively Parallel Supercomputers , 2015, BrainComp.

[35]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[36]  B. Leventhal,et al.  Unraveling the Miswired Connectome: A Developmental Perspective , 2014, Neuron.

[37]  Jack J. Lin,et al.  Neurodevelopmental alterations of large‐scale structural networks in children with new‐onset epilepsy , 2014, Human brain mapping.

[38]  C. Hilgetag,et al.  A predictive model of the cat cortical connectome based on cytoarchitecture and distance , 2014, Brain Structure and Function.

[39]  Alan C. Evans,et al.  BigBrain: initial tissue classification and surface extraction , 2014 .

[40]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[41]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[42]  P. Liddle,et al.  Abnormalities in structural covariance of cortical gyrification in schizophrenia , 2014, Brain Structure and Function.

[43]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[44]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[45]  L. Westlye,et al.  Intracortical Myelin Links with Performance Variability across the Human Lifespan: Results from T1- and T2-Weighted MRI Myelin Mapping and Diffusion Tensor Imaging , 2013, The Journal of Neuroscience.

[46]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[47]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[48]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[49]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[50]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[51]  E. Bullmore,et al.  The Convergence of Maturational Change and Structural Covariance in Human Cortical Networks , 2013, The Journal of Neuroscience.

[52]  M.-Marsel Mesulam,et al.  The evolving landscape of human cortical connectivity: Facts and inferences , 2012, NeuroImage.

[53]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[54]  Santo Fortunato,et al.  Consensus clustering in complex networks , 2012, Scientific Reports.

[55]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[56]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[57]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[58]  Adrian R. Willoughby,et al.  Effects of Working Memory Load on Visual Selective Attention: Behavioral and Electrophysiological Evidence , 2011, Front. Hum. Neurosci..

[59]  Katiuscia Sacco,et al.  Functional connectivity of the insula in the resting brain , 2011, NeuroImage.

[60]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[61]  Daniel A. Braun,et al.  Risk-Sensitivity in Sensorimotor Control , 2011, Front. Hum. Neurosci..

[62]  Efstathios D. Gennatas,et al.  Network-level structural covariance in the developing brain , 2010, Proceedings of the National Academy of Sciences.

[63]  Claus C. Hilgetag,et al.  Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex , 2010, NeuroImage.

[64]  R. Nathan Spreng,et al.  Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network , 2010, Journal of Cognitive Neuroscience.

[65]  B. T. Thomas Yeo,et al.  The Organization of Local and Distant Functional Connectivity in the Human Brain , 2010, PLoS Comput. Biol..

[66]  Leopold Parts,et al.  A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies , 2010, PLoS Comput. Biol..

[67]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[68]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[69]  Peter J Hellyer,et al.  Human brain mapping , 2012, Nature Methods.

[70]  Nicholas A. Bock,et al.  Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging , 2009, Journal of Neuroscience Methods.

[71]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[72]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[73]  Young Investigator,et al.  Organization for Human Brain Mapping , 2009, NeuroImage.

[74]  KJ Worsley,et al.  SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory , 2009, NeuroImage.

[75]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[76]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[77]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[78]  David H. Miller,et al.  Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain , 2007, Journal of magnetic resonance imaging : JMRI.

[79]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[80]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[81]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Joachim M. Buhmann,et al.  Stability-Based Validation of Clustering Solutions , 2004, Neural Computation.

[83]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[84]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.

[85]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[86]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[87]  M. Mesulam Principles of Behavioral and Cognitive Neurology , 2000 .

[88]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[89]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[90]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[91]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[92]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[94]  V. Braitenberg,et al.  Cyto- and Myeloarchitectonics: Two Aspects of the same Reality , 1998 .

[95]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[96]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[97]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[98]  B. Hellwig How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt. , 1993, Journal fur Hirnforschung.

[99]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[100]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[101]  P. Morgane,et al.  Comparative and Evolutionary Anatomy of the Visual Cortex of the Dolphin , 1990 .

[102]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[103]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[104]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[105]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[107]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[108]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[109]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[110]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[111]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[112]  P. Goldman-Rakic,et al.  Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. , 1982, Science.

[113]  C. Noback,et al.  The primate brain , 1970 .

[114]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[115]  F. Sanides The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions. , 1968, Brain research.

[116]  F. Sanides,et al.  Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). , 1967, Journal fur Hirnforschung.

[117]  F. Sanides THE CYTO-MYELOARCHITECTURE OF THE HUMAN FRONTAL LOBE AND ITS RELATION TO PHYLOGENETIC DIFFERENTIATION OF THE CEREBRAL CORTEX. , 1964, Journal fur Hirnforschung.

[118]  V. Braitenberg,et al.  A note on myeloarchitectonics , 1962, The Journal of comparative neurology.

[119]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[120]  F. Sanides Die Architektonik des menschlichen Stirnhirns : zugleich eine darstellung der Prinzipien seiner Gestaltung als Spiegel der Stammesgeschichtlichen Differenzierung der Grosshirnrinde , 1962 .

[121]  J. Chason The Isocortex of Man , 1952 .

[122]  A. Abbie Cortical lamination in a polyprotodont marsupial, Perameles nasuta , 1942 .

[123]  A. Abbie The excitable cortex in Perameles, Sarcophilus, Dasyurus, Trichosurus and Wallabia (Macropus) , 1940 .

[124]  A. Abbie THE EXCITABLE CORTEX IN THE MONOTREMATA , 1938 .

[125]  R A Dart,et al.  The Dual Structure of the Neopallium: its History and Significance. , 1934, Journal of anatomy.

[126]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[127]  J. Bolton,et al.  Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Gründlage , 1921 .

[128]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[129]  W. B. BENHAM,et al.  The Primate Brain , 1897, Nature.