Multiple objects tracking in fluorescence microscopy

Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

[1]  Michael Unser,et al.  Automatic tracking of particles in dynamic fluorescence microscopy , 2003, 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the.

[2]  R. Cherry,et al.  Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. , 1996, Journal of cell science.

[3]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[4]  R. Collins Rab and ARF GTPase regulation of exocytosis (Review) , 2003 .

[5]  Anthony A. Hyman,et al.  Rab5 regulates motility of early endosomes on microtubules , 1999, Nature Cell Biology.

[6]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[7]  Petros Koumoutsakos,et al.  Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Dmitry Chetverikov,et al.  Feature Point Tracking for Incomplete Trajectories , 1999, Computing.

[9]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Tai-Yu Chiu,et al.  An automated tracking system to measure the dynamic properties of vesicles in living cells , 2007, Microscopy research and technique.

[12]  W. Webb,et al.  Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. , 1994, Biophysical journal.

[13]  Iwao Sasase,et al.  Maneuver target tracking with an acceleration estimator using target past positions , 2002 .

[14]  W. Almers,et al.  Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. , 1999, Biophysical journal.

[15]  Paul R. Selvin,et al.  Tracking melanosomes inside a cell to study molecular motors and their interaction , 2007, Proceedings of the National Academy of Sciences.

[16]  B. C. Carter,et al.  Tracking single particles: a user-friendly quantitative evaluation , 2005, Physical biology.

[17]  W Tvaruskó,et al.  Time-resolved analysis and visualization of dynamic processes in living cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Lang Hong,et al.  Bias phenomenon and compensation for PDA/JPDA algorithms , 1998 .

[19]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[20]  Bo Zhang,et al.  Automated super-resolution detection of fluorescent rods in 2D , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[21]  Vikram Krishnamurthy,et al.  A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter , 2002, Signal Process..

[22]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[23]  Dmitry Chetverikov,et al.  Particle Image Velocimetry by Feature Tracking , 2001, CAIP.

[24]  G Ferrigno,et al.  Robust recovery of human motion from video using Kalman filters and virtual humans. , 2003, Human movement science.

[25]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[26]  S. Simon,et al.  Tracking single proteins within cells. , 2000, Biophysical journal.

[27]  R. Simmons,et al.  Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-Hidden-Markov method. , 2001, Biophysical journal.

[28]  M. Gharib,et al.  On errors of digital particle image velocimetry , 1997 .

[29]  Yaakov Bar-Shalom,et al.  Offline and Real-Time Methods for ML-PDA Track Validation , 2007, IEEE Transactions on Signal Processing.

[30]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[31]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[32]  Robin J. Evans,et al.  Peformance of dynamic programming techniques for Track-Before-Detect , 1996 .

[33]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[34]  Bing Chen,et al.  Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed-lag smoothing , 2001, Autom..

[35]  Gunilla Borgefors,et al.  A refined circular template matching method for classification of human cytomegalovirus capsids in TEM images , 2004, Comput. Methods Programs Biomed..

[36]  Ingemar J. Cox,et al.  A review of statistical data association techniques for motion correspondence , 1993, International Journal of Computer Vision.

[37]  Amar Mitiche,et al.  Motion tracking as spatio-temporal motion boundary detection , 2003, Robotics Auton. Syst..

[38]  Charles Kervrann,et al.  Multiple-target tracking of 3D fluorescent objects based on simulated annealing , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[39]  Kai Kwong Lam,et al.  Performance analysis for a class of iterative image thresholding algorithms , 1996, Pattern Recognit..

[40]  Vikram Krishnamurthy,et al.  Performance analysis of a dynamic programming track before detect algorithm , 2002 .

[41]  D. Wirtz,et al.  Efficient active transport of gene nanocarriers to the cell nucleus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Mubarak Shah,et al.  A noniterative greedy algorithm for multiframe point correspondence , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  F. Maxfield,et al.  Endocytic recycling , 2004, Nature Reviews Molecular Cell Biology.

[44]  P. Sorger,et al.  Automatic fluorescent tag localization II: improvement in super‐resolution by relative tracking , 2003, Journal of microscopy.

[45]  Roy L. Streit,et al.  Multitarget Tracking of Distributed Targets Using Histogram-PMHT , 2002, Digit. Signal Process..

[46]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[47]  Y. Kalaidzidis,et al.  RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase , 2003, Nature Cell Biology.

[48]  Yair Barniv,et al.  Dynamic Programming Solution for Detecting Dim Moving Targets , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Paul R. Selvin,et al.  Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement? , 2005, Science.

[50]  A. Trubuil,et al.  Visualization and quantification of vesicle trafficking on a three‐dimensional cytoskeleton network in living cells , 2007, Journal of microscopy.

[51]  A. Helenius,et al.  Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes , 2005, PLoS biology.

[52]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[53]  Jae-Soo Cho,et al.  Selective-Attention Correlation Measure for Precision Video Tracking , 2005, IEICE Trans. Inf. Syst..

[54]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[55]  Laurent D. Cohen,et al.  Tracking Single Quantum Dots in Live Cells with Minimal Paths , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[56]  Aubrey B. Poore,et al.  Multidimensional Assignments and Multitarget Tracking , 1993, Partitioning Data Sets.

[57]  Lang Hong,et al.  An interacting multipattern data association (IMPDA) tracking algorithm , 1998, Signal Process..

[58]  Digital Particle Image Velocimetry: a challenge for feature based tracking , 1999 .

[59]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[60]  P. Vallotton,et al.  Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. , 2003, Biophysical journal.

[61]  M E Anderson,et al.  Speckle tracking for multi-dimensional flow estimation. , 2000, Ultrasonics.

[62]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[63]  R. Cherry,et al.  Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. , 1992, Journal of cell science.

[64]  Jean-Christophe Olivo-Marin,et al.  Adaptive detection for tracking moving biological objects in video microscopy sequences , 1997, Proceedings of International Conference on Image Processing.

[65]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[66]  P. Sorger,et al.  Automatic fluorescent tag detection in 3D with super‐resolution: application to the analysis of chromosome movement , 2002, Journal of microscopy.

[67]  A. Wolkoff,et al.  Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for Dynein and Kinesin. , 2004, Molecular biology of the cell.

[68]  Henrik Flyvbjerg,et al.  Cell motility as persistent random motion: theories from experiments. , 2005, Biophysical journal.

[69]  Kim B. Housewright,et al.  Derivation and evaluation of improved tracking filter for use in dense multitarget environments , 1974, IEEE Trans. Inf. Theory.

[70]  E. Fedorov,et al.  Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. , 2000, Biophysical journal.

[71]  A. D. Brink,et al.  Using spatial information as an aid to maximum entropy image threshold selection , 1996, Pattern Recognit. Lett..

[72]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, CVGIP Image Underst..

[73]  Y. Kalaidzidis,et al.  Rab Conversion as a Mechanism of Progression from Early to Late Endosomes , 2005, Cell.

[74]  Cor J. Veenman,et al.  Motion tracking as a constrained optimization problem , 2003, Pattern Recognit..

[75]  Kazuhiko Kinosita,et al.  Myosin V Walks by Lever Action and Brownian Motion , 2007, Science.

[76]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  D. Sivia,et al.  Molecular spectroscopy and Bayesian spectral analysis—how many lines are there? , 1992 .

[78]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[79]  Y. Hidaka,et al.  Anomalous diffusion and Lévy distribution of particle velocity in soft-mode turbulence in electroconvection , 2002 .

[80]  I. Rhodes A tutorial introduction to estimation and filtering , 1971 .

[81]  P. Selvin,et al.  Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. , 2004, Biophysical journal.

[82]  Y. Bar-Shalom Tracking and data association , 1988 .

[83]  Chen Hong LI,et al.  Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells , 2004, Cell Research.

[84]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).