Exponential Homogenization of Linear Second Order Elliptic PDEs with Periodic Coefficients

A problem of homogenization of a divergence‐type second order uniformly elliptic operator is considered with arbitrary bounded rapidly oscillating periodic coefficients, either with periodic “outer” boundary conditions or in the whole space. It is proved that if the right‐hand side is Gevrey regular (in particular, analytic), then by optimally truncating the full two‐scale asymptotic expansion for the solution one obtains an approximation with an exponentially small error. The optimality of the exponential error bound is established for a one‐dimensional example by proving the analogous lower bound.

[1]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[2]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[3]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[4]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[5]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[6]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[7]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[8]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[9]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[10]  Ivo Babuska,et al.  Generalized p-FEM in homogenization , 2000, Numerische Mathematik.

[11]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[12]  S. Chapman,et al.  Exponential asymptotics and Stokes lines in a partial differential equation , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  The Failure of Uniform Exponential Decay for Boundary Layers , 2002 .

[14]  M. Birman,et al.  Second order periodic differential operators. Threshold properties and homogenization , 2004 .

[15]  Carlos Conca,et al.  Bloch Approximation in Homogenization and Applications , 2002, SIAM J. Math. Anal..

[16]  Homogenisation of exponential order for elliptic systems in infinite cylinders , 2005 .

[17]  G. Lebeau,et al.  Regularite gevrey 3 pour la diffraction , 1984 .

[18]  V. Zhikov,et al.  Operator estimates in homogenization theory , 2016 .

[19]  C. Bardos,et al.  Scattering frequencies and Gervey 3 singularities , 1987 .

[20]  Kirill Cherednichenko,et al.  On Full Two-Scale Expansion of the Solutions of Nonlinear Periodic Rapidly Oscillating Problems and Higher-Order Homogenised Variational Problems , 2004 .

[21]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[22]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[23]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[24]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[25]  Karsten Matthies,et al.  Time-Averaging under Fast Periodic Forcing of Parabolic Partial Differential Equations: Exponential Estimates , 2001 .