An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures

The strain-rate sensitivity of ultrafine-grained aluminum (Al) and nanocrystalline nickel (Ni) is studied with an improved nanoindentation creep method. Using the dynamic contact stiffness thermal drift influences can be minimized and reliable creep data can be obtained from nanoindentation creep experiments even at enhanced temperatures and up to 10 h. For face-centered cubic (fcc) metals it was found that the creep behavior is strongly influenced by the microstructure, as nanocrystalline (nc) as well as ultrafine-grained (ufg) samples show lower stress exponents when compared with their coarse-grained (cg) counterparts. The indentation creep behavior resembles a power-law behavior with stress exponents n being ∼ 20 at room temperature. For higher temperatures the stress exponents of ufg-Al and nc-Ni decrease down to n ∼ 5. These locally determined stress exponents are similar to the macroscopic exponents, indicating that similar deformation mechanisms are acting during indentation and macroscopic deformation. Grain boundary sliding found around the residual indentations is related to the motion of unconstrained surface grains.

[1]  Yong-Jae Kim,et al.  Indentation creep revisited , 2012 .

[2]  M. Göken,et al.  Experimental determination of the effective indenter shape and ε-factor for nanoindentation by continuously measuring the unloading stiffness , 2012 .

[3]  R. Raghavan,et al.  In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures , 2011 .

[4]  H. Höppel,et al.  Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al , 2011 .

[5]  H. Höppel,et al.  Macro‐ and Nanomechanical Properties and Strain Rate Sensitivity of Accumulative Roll Bonded and Equal Channel Angular Pressed Ultrafine‐Grained Materials , 2011 .

[6]  G. Pharr,et al.  Plastic instability in amorphous selenium near its glass transition temperature , 2010 .

[7]  A. Hodge,et al.  High-temperature nanoindentation: New developments and ongoing challenges , 2009 .

[8]  T. Nieh,et al.  Nanoindentation creep of nanocrystalline nickel at elevated temperatures , 2009 .

[9]  W. Clegg,et al.  Micropillar compression of ceramics at elevated temperatures , 2009 .

[10]  S. Tin,et al.  High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy , 2008 .

[11]  J. G. Sevillano,et al.  Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium , 2008 .

[12]  D. Stone,et al.  Analysis of indentation creep , 2010 .

[13]  W. Blum,et al.  Deformation kinetics of nanocrystalline nickel , 2007 .

[14]  W. Blum,et al.  Flow stress and creep rate of nanocrystalline Ni , 2007 .

[15]  H. Vehoff,et al.  The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel , 2007 .

[16]  T. Clyne,et al.  A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature , 2006 .

[17]  A. Hamza,et al.  Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni , 2006 .

[18]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[19]  Marc Legros,et al.  Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films , 2006 .

[20]  T. Nieh,et al.  Strengthening and softening of nanocrystalline nickel during multistep nanoindentation , 2006 .

[21]  T. Langdon,et al.  Experimental Evidence for Grain‐Boundary Sliding in Ultrafine‐Grained Aluminum Processed by Severe Plastic Deformation , 2006 .

[22]  H. Höppel,et al.  Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation , 2005 .

[23]  H. Höppel,et al.  Strain-rate sensitivity of ultrafine-grained materials , 2005 .

[24]  M. Svoboda,et al.  Creep in ultrafine grained aluminium , 2004 .

[25]  T. Nieh,et al.  New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling , 2004 .

[26]  Kai Zhang,et al.  The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper , 2004 .

[27]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[28]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[29]  H. Höppel,et al.  Enhanced Strength and Ductility in Ultrafine‐Grained Aluminium Produced by Accumulative Roll Bonding , 2004 .

[30]  G. Pharr,et al.  Nanoindentation creep of quartz, with implications for rate- and state-variable friction laws relevant to earthquake mechanics , 2004 .

[31]  R. Hempelmann,et al.  Tailor-made nanomaterials designed by electrochemical methods , 2003 .

[32]  Subra Suresh,et al.  Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel , 2003 .

[33]  Ben D. Beake,et al.  High-temperature nanoindentation testing of fused silica and other materials , 2002 .

[34]  Yang-Tse Cheng,et al.  Scaling relationships in indentation of power-law creep solids using self-similar indenters , 2001 .

[35]  M. E. Kassner,et al.  Five-power-law creep in single phase metals and alloys , 2000 .

[36]  Warren C. Oliver,et al.  Indentation power-law creep of high-purity indium , 1999 .

[37]  Nano-Scale Indentation Creep Testing at Non-Ambient Temperature , 1998 .

[38]  Alexei Bolshakov,et al.  Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques , 1998 .

[39]  Alexei Bolshakov,et al.  Using the Ratio of Loading Slope and Elastic Stiffness to Predict Pile-Up and Constraint Factor During Indentation , 1998 .

[40]  J. Pethica,et al.  Nanoindentation creep of single-crystal tungsten and gallium arsenide , 1997 .

[41]  B. D. Fabes,et al.  The relationship between indentation and uniaxial creep in amorphous selenium , 1995 .

[42]  W. Oliver,et al.  Time Dependent Indentation Testing At Non-Ambient Temperatures Utilizing the High Temperature Mechanical Properties Microprobe , 1994 .

[43]  A. F. Bower,et al.  Indentation of a power law creeping solid , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[45]  R. M. Hooper,et al.  The mechanisms of indentation creep , 1991 .

[46]  J. Pethica,et al.  Monitoring Time-Dependent Deformation in Small Volumes , 1991 .

[47]  Warren C. Oliver,et al.  A new method for analyzing data from continuous depth-sensing microindentation tests , 1990 .

[48]  William D. Nix,et al.  A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb , 1988 .

[49]  J. Pethica,et al.  Tip Surface Interactions in STM and AFM , 1987 .

[50]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[51]  David Tabor,et al.  Plastic indentation in metals with cones , 1965 .

[52]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[53]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[54]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .