Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles

Two cycles are said to be adjacent if they share a common edge. Let G be a planar graph without triangles adjacent 4-cycles. We prove that ? l ? ( G ) ? Δ ( G ) + 2 if Δ ( G ) ? 6 , and ? l ' ( G ) = Δ ( G ) and ? l ? ( G ) = Δ ( G ) + 1 if Δ ( G ) ? 8 , where ? l ' ( G ) and ? l ? ( G ) denote the list edge chromatic number and list total chromatic number of G , respectively. Highlights? The list edge colorings and list total colorings of planar graphs without triangles adjacent 4-cycles are investigated. ? We proved that, if a planar graph G without triangles adjacent 4-cycles and Δ ( G ) ? 8 , then ? l ' ( G ) = Δ ( G ) . ? It is proved that ? l ? ( G ) ? Δ ( G ) + 2 , where G is a planar graph without triangles adjacent 4-cycles and Δ ( G ) ? 6 . ? It is proved that ? l ? ( G ) = Δ ( G ) + 1 , where G is a planar graph without triangles adjacent 4-cycles and Δ ( G ) ? 8 .

[1]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[2]  Bojan Mohar,et al.  List Total Colourings of Graphs , 1998, Combinatorics, Probability and Computing.

[3]  Daniel W. Cranston Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles , 2009, Discuss. Math. Graph Theory.

[4]  Wei-Fan Wang,et al.  Edge choosability of planar graphs without 5-cycles with a chord , 2009, Discret. Math..

[5]  Jianfeng Hou,et al.  List edge and list total colorings of planar graphs without 4-cycles , 2006, Theor. Comput. Sci..

[6]  Ko-Wei Lih,et al.  Choosability and Edge Choosability of Planar Graphs without Intersecting Triangles , 2002, SIAM J. Discret. Math..

[7]  Rui Li,et al.  Edge choosability and total choosability of toroidal graphs without intersecting triangles , 2012, Ars Comb..

[8]  Ping Wang,et al.  A note on total colorings of planar graphs without 4-cycles , 2004, Discuss. Math. Graph Theory.

[9]  Bin Liu,et al.  List edge and list total colorings of planar graphs without short cycles , 2008, Inf. Process. Lett..

[10]  Bin Liu,et al.  Total colorings and list total colorings of planar graphs without intersecting 4-cycles , 2009, Discret. Math..

[11]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[12]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[13]  松尾 悠生,et al.  List-colorings of graphs , 2007 .

[14]  Béla Bollobás,et al.  List-colourings of graphs , 1985, Graphs Comb..

[15]  Jianfeng Hou,et al.  Some Results on List Total Colorings of Planar Graphs , 2007, International Conference on Computational Science.

[16]  Jian-Liang Wu,et al.  List-edge and list-total colorings of graphs embedded on hyperbolic surfaces , 2008, Discret. Math..

[17]  Gerard J. Chang,et al.  On the total choosability of planar graphs and of sparse graphs , 2010, Inf. Process. Lett..

[18]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.