NO2 vertical profiles and column densities from MAX-DOAS measurements in Mexico City

Abstract. We present a new numerical code, Mexican MAX-DOAS Fit (MMF), developed to retrieve profiles of different trace gases from the network of MAX-DOAS instruments operated in Mexico City. MMF uses differential slant column densities (dSCDs) retrieved with the QDOAS (Danckaert et al., 2013) software. The retrieval is comprised of two steps, an aerosol retrieval and a trace gas retrieval that uses the retrieved aerosol profile in the forward model for the trace gas. For forward model simulations, VLIDORT is used (e.g., Spurr et al., 2001; Spurr, 2006, 2013). Both steps use constrained least-square fitting, but the aerosol retrieval uses Tikhonov regularization and the trace gas retrieval optimal estimation. Aerosol optical depth and scattering properties from the AERONET database, averaged ceilometer data, WRF-Chem model data, and temperature and pressure sounding data are used for different steps in the retrieval chain. The MMF code was applied to retrieve NO2 profiles with 2 degrees of freedom (DOF = 2) from spectra of the MAX-DOAS instrument located at the Universidad Nacional Autónoma de México (UNAM) campus. We describe the full error analysis of the retrievals and include a sensitivity exercise to quantify the contribution of the uncertainties in the aerosol extinction profiles to the total error. A data set comprised of measurements from January 2015 to July 2016 was processed and the results compared to independent surface measurements. We concentrate on the analysis of four single days and additionally present diurnal and annual variabilities from averaging the 1.5 years of data. The total error, depending on the exact counting, is 14 %–20 % and this work provides new and relevant information about NO2 in the boundary layer of Mexico City.

[1]  Naifang Bei,et al.  NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010 , 2013 .

[2]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data , 2019, Atmospheric Measurement Techniques.

[3]  Yan Zhang,et al.  Mobile mini-DOAS measurement of the outflow of NO 2 and HCHO from Mexico City , 2009 .

[4]  K. Stamnes,et al.  A new spherical model for computing the radiation field available for photolysis and heating at twilight , 1991 .

[5]  A. Vandaele,et al.  Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O , 1999, Environmental science and pollution research international.

[6]  Daniele Bortoli,et al.  PROMSAR: A backward Monte Carlo spherical RTM for the analysis of DOAS remote sensing measurements , 2005 .

[7]  Johannes Orphal,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME: PART 1. TEMPERATURE-DEPENDENT ABSORPTION CROSS-SECTIONS OF NO2 IN THE 231–794 nm RANGE , 1998 .

[8]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[9]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[10]  U. Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[11]  B. Dix,et al.  The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO , 2011 .

[12]  R. Volkamer,et al.  The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO 2 and azimuth-dependent OVOC ratios , 2015 .

[13]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[14]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign , 2020, Atmospheric Measurement Techniques.

[15]  A. Kokhanovsky,et al.  Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN , 2014 .

[16]  M. Molina,et al.  Air quality in the Mexico megacity : an integrated assessment , 2002 .

[17]  J. Orphal A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible , 2003 .

[18]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[19]  Geert K. Moortgat,et al.  Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm , 2000 .

[20]  U. Platt,et al.  Reactive bromine and sulfur emissions at Salar de Uyuni, Bolivia , 2004 .

[21]  Michael Buchwitz,et al.  Development of a correlated-k distribution band model scheme for the radiative transfer program GOMETRAN/SCIATRAN for retrieval of atmospheric constituents from SCIMACHY/ENVISAT-1 data , 1998, Remote Sensing.

[22]  D. R. Bates Rayleigh scattering by air , 1984 .

[23]  F. Szczap,et al.  Retrieval of tropospheric NO2 columns from satellite measurements in presence of cirrus: A theoretical sensitivity study using SCIATRAN and prospect application for the A-Train , 2009 .

[24]  Claudia Rivera,et al.  The MAX-DOAS network in Mexico City to measure atmospheric pollutants , 2016 .

[25]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[26]  K. Pfeilsticker,et al.  Radiation and Optics in the Atmosphere , 2007 .

[27]  H. Bovensmann,et al.  Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model , 2013 .

[28]  R. Steinbrecher,et al.  Detection of pollution transport events southeast of Mexico City using ground-based visible spectroscopy measurements of nitrogen dioxide , 2009 .

[29]  John P. Burrows,et al.  MAX-DOAS measurements of atmospheric trace gases in Ny- ˚ Alesund - Radiative transfer studies and their application , 2004 .

[30]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[31]  V. Oinas,et al.  Atmospheric Radiation , 1963, Nature.

[32]  Ulrich Platt,et al.  MAX‐DOAS O4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies , 2006 .

[33]  A. Delon,et al.  NO2 absorption cross section and its temperature dependence , 1997 .

[34]  Thomas F. Hanisco,et al.  Fourier Transform Ultraviolet Spectroscopy of the A 2Π3/2 ← X 2Π3/2 Transition of BrO† , 1999 .

[35]  Shanshan Wang,et al.  MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain , 2016 .

[36]  A. Ruiz‐Angulo,et al.  Variability of the Mixed-Layer Height Over Mexico City , 2018, Boundary-Layer Meteorology.

[37]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[38]  A. Vandaele,et al.  Absorption cross-sections of NO2: simulation of temperature and pressure effects , 2003 .

[39]  Ulrich Platt,et al.  MAX‐DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content , 2004 .

[40]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[41]  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign , 2021 .

[42]  Steffen Beirle,et al.  Inversion of tropospheric profiles of aerosol extinction and HCHO and NO 2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets , 2011 .

[43]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[44]  Pinhua Xie,et al.  Ground-based MAX-DOAS observations of tropospheric aerosols, NO 2 , SO 2 and HCHO in Wuxi, China, from 2011 to 2014 , 2016 .

[45]  Ulrich Platt,et al.  Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species , 2000 .

[46]  Norbert Kaiser,et al.  Derivation of tropospheric NO3 profiles using off‐axis differential optical absorption spectroscopy measurements during sunrise and comparison with simulations , 2002 .

[47]  Christian Hermans,et al.  Four years of ground-based MAX-DOAS observations of HONO and NO 2 in the Beijing area , 2012 .

[48]  Vladimir V. Rozanov,et al.  Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN , 2017 .

[49]  C. V. Friedeburg Derivation of Trace Gas Information combining Differential Optical Absorption Spectroscopy with Radiative Transfer Modelling , 2003 .

[50]  J. Burrows,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .

[51]  U. Platt,et al.  A low power automated MAX-DOAS instrument for the Arctic and other remote unmanned locations , 2009 .

[52]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[53]  Thomas P. Kurosu,et al.  A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval , 2001 .

[54]  Tilman Steck,et al.  Methods for determining regularization for atmospheric retrieval problems. , 2002, Applied optics.

[55]  Stanley C. Solomon,et al.  On the evaluation of air mass factors for atmospheric near‐ultraviolet and visible absorption spectroscopy , 1993 .