Simulating x-ray observations of galaxy clusters with the x-ray integral field unit onboard the ATHENA mission

The X-ray Integral Field Unit (X-IFU) is the cryogenic imaging spectrometer onboard the ESA L2 mission Athena. With its array of almost 3840 superconducting Transition Edge Sensors micro-calorimeters, the X-IFU will provide spatially resolved (5" over the field of view) high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) in the 0.2-12 keV energy band. These transformational capabilities will allow the X-IFU to probe the Hot and Energetic Universe, and notably measure the physical properties of large-scale structures with unprecedented accuracy. Starting from numerically-simulated massive (1014M) galaxy clusters at different steps of their evolution, we investigate the capabilities of the X-IFU in recovering chemical abundances, redshift and gas temperature spatial distributions across time, making use of full field-of-view End-To-End simulations of X-IFU observations. This work serve as feasibility study for the Chemical Enrichment of the Universe science objective. We show that using 100 ks observations, the X-IFU will provide an unprecedented spatially-accurate knowledge of the physics of the ICM (abundances, temperature, bulk-motion). We also demonstrate that challenges related to the data analysis of extended sources with very high-resolution spectrometers (e.g. binning, line of sight mixing, particle background) need to be thoroughly addressed to maximise the science of the instrument.

[1]  Philippe Peille,et al.  The Athena X-ray Integral Field Unit , 2018, 1807.06092.

[2]  Philippe Peille,et al.  Reproducibility and monitoring of the instrumental particle background for the x-ray integral field unit , 2018, Astronomical Telescopes + Instrumentation.

[3]  N. Clerc,et al.  Measuring turbulence and gas motions in galaxy clusters via synthetic Athena X-IFU observations , 2018, Astronomy & Astrophysics.

[4]  S. Borgani,et al.  The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations , 2018, 1801.05425.

[5]  S. Borgani,et al.  The history of chemical enrichment in the intracluster medium from cosmological simulations , 2017, 1701.08164.

[6]  Gregory V. Brown,et al.  Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster , 2016, 1607.07420.

[7]  J. Kaastra,et al.  Origin of central abundances in the hot intra-cluster medium - II. Chemical enrichment and supernova yield models , 2016, 1608.03888.

[8]  G. C. Hilton,et al.  Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena , 2016, Astronomical Telescopes + Instrumentation.

[9]  T. Mineo,et al.  The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview , 2016, Astronomical Telescopes + Instrumentation.

[10]  J. Kaastra,et al.  Origin of central abundances in the hot intra-cluster medium - I. Individual and average abundance ratios from XMM-Newton EPIC , 2016, 1606.01165.

[11]  J. Kaastra,et al.  Optimal binning of X-ray spectra and response matrix design , 2016, 1601.05309.

[12]  F. Douchin,et al.  The Athena X-ray Integral Field Unit (X-IFU) , 2015, Astronomical Telescopes + Instrumentation.

[13]  S. Borgani,et al.  COOL CORE CLUSTERS FROM COSMOLOGICAL SIMULATIONS , 2015, 1509.04247.

[14]  B. L. Martino,et al.  In-orbit background of X-ray microcalorimeters and its effects on observations , 2014, 1410.3373.

[15]  Shouleh Nikzad,et al.  Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray , 2014 .

[16]  Norbert Meidinger,et al.  ATHENA end-to-end simulations , 2014, Astronomical Telescopes and Instrumentation.

[17]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[18]  E. Feigelson,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013, 1306.2307.

[19]  F. Durret,et al.  Observations of Metals in the Intra-Cluster Medium , 2008, 0801.1052.

[20]  H. Böhringer,et al.  Carbon and nitrogen in the X-ray emitting hot gas of M 87 , 2007 .

[21]  A. Finoguenov,et al.  Heating versus cooling in galaxies and clusters of galaxies : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-11 August 2006 , 2007 .

[22]  J. Sanders Contour binning: a new technique for spatially-resolved X-ray spectroscopy applied to Cassiopeia A , 2006, astro-ph/0606528.

[23]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[24]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[25]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[26]  UK Harvard-Smithsonian Center for Astrophysics,et al.  Simulating Chandra observations of galaxy clusters , 2003, Proceedings of the International Astronomical Union.

[27]  S.Campana,et al.  The Resolved Fraction of the Cosmic X-Ray Background , 2003, astro-ph/0301555.

[28]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[29]  S. H. Moseley,et al.  A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors , 2000, astro-ph/0205012.

[30]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[31]  K. Arnaud XSPEC: The First Ten Years , 1996 .

[32]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[33]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[34]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .