Implications of phonon anisotropy on thermal conductivity of fluorite oxides

Fluorite oxides are attractive ionic compounds for a range of applications with critical thermal management requirements. In view of recent reports alluding to anisotropic thermal conductivity in this face-centered cubic crystalline systems, we perform a detailed analysis of the impact of direction-dependent phonon group velocities and lifetimes on the thermal transport of fluorite oxides. We demonstrate that the bulk thermal conductivity of this class of materials remains isotropic despite notable anisotropy in phonon lifetime and group velocity. However, breaking the symmetry of the phonon lifetime under external stimuli including boundary scattering present in nonequilibrium molecular dynamics simulations of finite size simulation cell gives rise to apparent thermal conductivity anisotropy. We observe that for accurate determination of thermal conductivity, it is important to consider phonon properties not only along high symmetry directions commonly measured in inelastic neutron or x-ray scattering experiments but also of those along lower symmetry. Our results suggests that certain low symmetry directions have a larger contribution to thermal conductivity compared to high symmetry ones.

[1]  D. Hurley,et al.  Temperature-dependent elastic constants of thorium dioxide probed using time-domain Brillouin scattering , 2023, Journal of Applied Physics.

[2]  A. Togo First-principles Phonon Calculations with Phonopy and Phono3py , 2023, Journal of the Physical Society of Japan.

[3]  C. Marianetti,et al.  Capturing the ground state of uranium dioxide from first principles: Crystal distortion, magnetic structure, and phonons , 2022, Physical Review B.

[4]  C. Marianetti,et al.  Generalized quasiharmonic approximation via space group irreducible derivatives , 2022, Physical Review B.

[5]  C. Marianetti,et al.  Validating first-principles phonon lifetimes via inelastic neutron scattering , 2022, Physical Review B.

[6]  Pietro Cataldi,et al.  Electrically controlled heat transport in multilayer graphene , 2022, 2202.10342.

[7]  C. Marianetti,et al.  Thermal Energy Transport in Oxide Nuclear Fuel. , 2021, Chemical reviews.

[8]  R. Caciuffo,et al.  Anisotropy in cubic UO2 caused by electron-lattice interactions , 2021, Physical Review B.

[9]  D. Hurley,et al.  Indirect characterization of point defects in proton irradiated ceria , 2021 .

[10]  Jie Peng,et al.  Thermal conductivity of ThO2: Effect of point defect disorder , 2021 .

[11]  C. Marianetti,et al.  Assessment of empirical interatomic potential to predict thermal conductivity in ThO2 and UO2 , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  C. Marianetti,et al.  Nonlinear propagating modes beyond the phonons in fluorite-structured crystals , 2020 .

[13]  L. Shao,et al.  The influence of lattice defects, recombination, and clustering on thermal transport in single crystal thorium dioxide , 2020 .

[14]  D. Hurley,et al.  Combining mesoscale thermal transport and x-ray diffraction measurements to characterize early-stage evolution of irradiation-induced defects in ceramics , 2020 .

[15]  V. Gusev,et al.  Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons , 2020, Nature Communications.

[16]  J. O’Connell,et al.  Simultaneous characterization of cross- and in-plane thermal transport in insulator patterned by directionally aligned nano-channels , 2020, AIP Advances.

[17]  S. Middleburgh,et al.  Influence of boron isotope ratio on the thermal conductivity of uranium diboride (UB2) and zirconium diboride (ZrB2) , 2020, Journal of Nuclear Materials.

[18]  L. Bichler,et al.  Thermal conductivity of bulk and porous ThO2: Atomistic and experimental study , 2019, Journal of Alloys and Compounds.

[19]  V. Gusev,et al.  Nondestructive characterization of polycrystalline 3D microstructure with time-domain Brillouin scattering , 2019, Scripta Materialia.

[20]  L. Bichler,et al.  Atomistic and experimental study on thermal conductivity of bulk and porous cerium dioxide , 2019, Scientific Reports.

[21]  Mordechai Kornbluth,et al.  Group theoretical approach to computing phonons and their interactions , 2019, Physical Review B.

[22]  E. Pop,et al.  Thermal conductivity of crystalline AlN and the influence of atomic-scale defects , 2019, Journal of Applied Physics.

[23]  Yinchang Zhao,et al.  Lattice thermodynamic behavior in nuclear fuel ThO2 from first principles , 2018, Journal of Nuclear Materials.

[24]  E. Farfán,et al.  Sensitivity of thermal transport in thorium dioxide to defects , 2018, Journal of Nuclear Materials.

[25]  E. Farfán,et al.  Thermal transport in thorium dioxide , 2017, Nuclear Engineering and Technology.

[26]  J. Szpunar,et al.  The induced anisotropy in thermal conductivity of thorium dioxide and cerium dioxide , 2017 .

[27]  P. Ghosh,et al.  A computational study on the superionic behaviour of ThO2. , 2016, Physical chemistry chemical physics : PCCP.

[28]  Michele V. Manuel,et al.  Subsurface Imaging of Grain Microstructure Using Picosecond Ultrasonics , 2016 .

[29]  R. Grimes,et al.  Modelling the thermal conductivity of (UxTh1−x)O2 and (UxPu1−x)O2 , 2015 .

[30]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[31]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[32]  Baoling Huang,et al.  Computational Study of In-Plane Phonon Transport in Si Thin Films , 2014, Scientific Reports.

[33]  J. L. Smith,et al.  Anisotropic thermal conductivity in uranium dioxide , 2014, Nature Communications.

[34]  Liang-Feng Huang,et al.  Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2 , 2014 .

[35]  Y. Gohda,et al.  Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Robin W. Grimes,et al.  A many-body potential approach to modelling the thermomechanical properties of actinide oxides , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  K. Idemitsu,et al.  Thermal conductivities of ThO2, NpO2 and their related oxides: Molecular dynamics study , 2014 .

[38]  L. Murr Examples of Tensor Properties Using Matrix Fundamentals (A Physical Property) , 2014 .

[39]  T. L. Reinecke,et al.  Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study , 2013 .

[40]  C. Uher,et al.  A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .

[41]  Laurent Chaput,et al.  Direct solution to the linearized phonon Boltzmann equation. , 2013, Physical review letters.

[42]  M. Lumsden,et al.  Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.

[43]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[44]  Y. Lu,et al.  Thermodynamic properties and structural stability of thorium dioxide , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Jiao Y. Y. Lin,et al.  Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. , 2012, The Review of scientific instruments.

[46]  Z. Akšamija,et al.  Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes , 2010 .

[47]  A. K. Subramani,et al.  Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy , 2009 .

[48]  Dehua Dong,et al.  YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650 °C , 2008 .

[49]  Lucas Lindsay,et al.  Three-phonon phase space and lattice thermal conductivity in semiconductors , 2008 .

[50]  P. Dollfus,et al.  Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model , 2008 .

[51]  S. Savrasov,et al.  Origin of low thermal conductivity in nuclear fuels. , 2008, Physical review letters.

[52]  B. Johansson,et al.  Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism , 2007 .

[53]  O. Wright,et al.  Time-resolved surface acoustic wave propagation across a single grain boundary , 2006 .

[54]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[55]  W. J. Choyke,et al.  Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering , 2002 .

[56]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[57]  M. Boaro,et al.  The utilization of ceria in industrial catalysis , 1999 .

[58]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[59]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[60]  I. Metcalfe,et al.  Solid oxide fuel cells based on Ce(Gd)O2 − x electrolytes , 1996 .

[61]  Baroni,et al.  Ab initio lattice dynamics of diamond. , 1993, Physical review. B, Condensed matter.

[62]  Jean-Louis Calais,et al.  Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00 , 1993 .

[63]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[64]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[65]  K. Clausen,et al.  Inelastic neutron scattering investigation of the lattice dynamics of ThO2 and CeO2 , 1987 .

[66]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[67]  S. Tamura Isotope scattering of large-wave-vector phonons in GaAs and InSb : Deformation-dipole and overlap-shell models , 1984 .

[68]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[69]  K. Renk,et al.  Anharmonic Decay of Zone-Boundary Phonons Observed by a New Method of Phonon Detection , 1981 .

[70]  W. Bron Spectroscopy of high-frequency phonons , 1980 .

[71]  P. Pershan,et al.  Phonon Optical Properties of Ca 1-x Sr x F 2 , 1970 .

[72]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[73]  R. Orbach,et al.  The attenuation of high frequency phonons at low temperatures , 1964 .

[74]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[75]  W. Hume-rothery Elasticity and Anelasticity of Metals , 1949, Nature.