Linear fractional transformations and spectral factorization

A spectral factorization algorithm based on linear fractional transformations is presented.

[1]  J. D. Rhodes,et al.  Explicit solution for the synthesis of two-variable transmission-line networks , 1973 .

[2]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[3]  Y. Genin,et al.  On the role of the Nevanlinna–Pick problem in circuit and system theory† , 1981 .

[4]  T. Kailath,et al.  On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .

[5]  Y. Kamp,et al.  A simple approach to spectral factorization , 1978 .

[6]  J. Rissanen,et al.  1972 IFAC congress paper: Partial realization of random systems , 1972 .

[7]  Y. Kamp,et al.  Schur Parametrization of Positive Definite Block-Toeplitz Systems , 1979 .

[8]  F. Callier On polynomial matrix spectral factorization by symmetric extraction , 1985 .

[9]  Brian D. O. Anderson,et al.  Recursive algorithm for spectral factorization , 1974 .

[10]  B. Friedlander A lattice algorithm for factoring the spectrum of a moving average process , 1983 .

[11]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[12]  P. Dewilde,et al.  Lossless chain scattering matrices and optimum linear prediction: The vector case , 1981 .

[13]  Y. Kamp,et al.  Orthogonal polynomial matrices on the unit circle , 1978 .

[14]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[15]  R. Saeks,et al.  The factorization problem—A survey , 1976, Proceedings of the IEEE.

[16]  D. Sarason Generalized interpolation in , 1967 .