A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines

The control of motion of one element with respect to others in an interlocked architecture allows for different co-conformational states of a molecule. This can result in variations of physical or chemical properties. The increase of knowledge in the field of molecular interactions led to the design, the synthesis, and the study of various systems of molecular machinery in a wide range of interlocked architectures. In this field, the discovery of new molecular stations for macrocycles is an attractive way to conceive original molecular machines. In the very recent past, the triazolium moiety proved to interact with crown ethers in interlocked molecules, so that it could be used as an ideal molecular station. It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines. This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

[1]  Zheng Meng,et al.  A molecular pulley based on a triply interlocked [2]rotaxane. , 2015, Chemical communications.

[2]  Wei Jiang,et al.  A double plug-socket system capable of molecular keypad locks through controllable photooxidation. , 2009, Chemistry.

[3]  Chuan-feng Chen Novel triptycene-derived hosts: synthesis and their applications in supramolecular chemistry. , 2011, Chemical communications.

[4]  J. F. Stoddart,et al.  Supramolecular daisy chains. , 2001, The Journal of organic chemistry.

[5]  A. Credi,et al.  Light to investigate (read) and operate (write) molecular devices and machines. , 2014, Chemical Society reviews.

[6]  N. Giuseppone,et al.  pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes. , 2015, Chemical communications.

[7]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[8]  Chuan-Feng Chen,et al.  A new [3]rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station. , 2010, Organic letters.

[9]  J. Sauvage,et al.  Transition-metal template synthesis of a rotaxane incorporating two different coordinating units in its thread , 1997 .

[10]  Severin T. Schneebeli,et al.  An electrochemically and thermally switchable donor-acceptor [c2]daisy chain rotaxane. , 2014, Angewandte Chemie.

[11]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[12]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[13]  H. Ågren,et al.  A switchable bis-branched [1]rotaxane featuring dual-mode molecular motions and tunable molecular aggregation. , 2014, ACS applied materials & interfaces.

[14]  D. H. Busch,et al.  Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis , 1995 .

[15]  J. Fraser Stoddart,et al.  The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .

[16]  F. Coutrot,et al.  A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. , 2014, Angewandte Chemie.

[17]  F. Coutrot,et al.  Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. , 2010, The Journal of organic chemistry.

[18]  T. Takata,et al.  Selective transformation of a crown ether/sec-ammonium salt-type rotaxane to N-alkylated rotaxanes. , 2010, Organic letters.

[19]  J. Jiménez-Barbero,et al.  Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain , 2012 .

[20]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .

[21]  Francesco Zerbetto,et al.  Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.

[22]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[23]  Chi-Ming Che,et al.  Self‐Assembled Electroluminescent Polymers Derived from Terpyridine‐Based Moieties , 2003 .

[24]  D. Leigh,et al.  A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. , 2014, Journal of the American Chemical Society.

[25]  C. Enjalbal,et al.  Straightforward synthesis of a double-lasso macrocycle from a nonsymmetrical [c2]daisy chain. , 2013, Organic letters.

[26]  Heng-Yi Zhang,et al.  A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms. , 2013, Organic letters.

[27]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[28]  Ying Ma,et al.  A novel pentiptycene bis(crown ether)-based [2](2)rotaxane whose two DB24C8 rings act as flapping wings of a butterfly. , 2014, Organic letters.

[29]  J. F. Stoddart,et al.  Supramolecular polymers: Molecular machines muscle up. , 2013, Nature nanotechnology.

[30]  T. Takata,et al.  Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. , 2006, The Journal of organic chemistry.

[31]  D. Qu,et al.  A Perylene‐Bridged Switchable [3]Rotaxane Molecular Shuttle with a Fluorescence Output , 2015 .

[32]  Kevin D. Haenni,et al.  A rotaxane-based switchable organocatalyst. , 2012, Angewandte Chemie.

[33]  M. W. Hosseini,et al.  Porphyrin-based switchable molecular turnstiles. , 2011, Chemistry.

[34]  J. F. Stoddart,et al.  The master of chemical topology. , 2009, Chemical Society reviews.

[35]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[36]  J. Sauvage,et al.  Molecular Muscles: From Species in Solution to Materials and Devices , 2014 .

[37]  D. Qu,et al.  A bis-spiropyran-containing multi-state [2]rotaxane with fluorescence output , 2013 .

[38]  Emilie Moulin,et al.  Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. , 2012, Angewandte Chemie.

[39]  J. F. Stoddart,et al.  On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer , 2010 .

[40]  Euan R Kay,et al.  Electrochemically switchable hydrogen-bonded molecular shuttles. , 2003, Journal of the American Chemical Society.

[41]  Benoit Colasson,et al.  Towards molecular machines and motors based on transition metal complexes , 2002 .

[42]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[43]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[44]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[45]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[46]  Laurence Raehm,et al.  A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell , 1999 .

[47]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[48]  R. Huisgen Kinetik und Mechanismus 1.3‐Dipolarer Cycloadditionen , 1963 .

[49]  R. Huisgen Kinetics and reaction mechanisms: selected examples from the experience of forty years , 1989 .

[50]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[51]  J. Fraser Stoddart,et al.  Selbstaufbau eines schaltbaren [2]Rotaxans , 1997 .

[52]  Günter Szeimies,et al.  1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen , 1967 .

[53]  U. Schubert,et al.  High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. , 2005, Journal of the American Chemical Society.

[54]  F. Coutrot,et al.  A new glycorotaxane molecular machine based on an anilinium and a triazolium station. , 2008, Chemistry.

[55]  D. Leigh,et al.  Exploring the activation modes of a rotaxane-based switchable organocatalyst. , 2014, Journal of the American Chemical Society.

[56]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[57]  Harald Hofmeier,et al.  Recent developments in the supramolecular chemistry of terpyridine-metal complexes. , 2004, Chemical Society reviews.

[58]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[59]  Alberto Credi,et al.  Shuttling dynamics in an acid-base-switchable [2]rotaxane. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  F. Coutrot,et al.  N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines. , 2013, The Journal of organic chemistry.

[61]  M. W. Hosseini,et al.  A platinum turnstile with a palladium lock. , 2013, Dalton transactions.

[62]  Pablo Gaviña,et al.  Electrochemically induced molecular motions in a copper(I) complex pseudorotaxane , 1996 .

[63]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[64]  Jean-Pierre Sauvage,et al.  Transition‐Metal‐Complexed Molecular Machine Prototypes , 2006 .

[65]  David J. Williams,et al.  Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .

[66]  Huibiao Liu,et al.  Synthesis of a [2]rotaxane operated in basic environment. , 2011, Organic & biomolecular chemistry.

[67]  M. W. Hosseini,et al.  A molecular gate based on a porphyrin and a silver lock. , 2007, Chemical communications.

[68]  F. Coutrot,et al.  Bistable or oscillating state depending on station and temperature in three-station glycorotaxane molecular machines. , 2010, Chemistry.

[69]  F. Coutrot,et al.  Controlling the chair conformation of a mannopyranose in a large-amplitude [2]rotaxane molecular machine. , 2009, Chemistry.

[70]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[71]  D. Qu,et al.  Dual-mode operation of a bistable [1]rotaxane with a fluorescence signal. , 2013, Organic letters.

[72]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[73]  M. W. Hosseini,et al.  Open and closed states of a porphyrin based molecular turnstile. , 2011, Dalton transactions.

[74]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[75]  David J. Williams,et al.  DIALKYLAMMONIUM-IONEN/KRONENETHER-KOMPLEXE : VORLAUFER EINER NEUEN FAMILIE MECHANISCH VERKNUPFTER MOLEKULE , 1995 .

[76]  Yu Liu,et al.  pH-Controlled intramolecular charge-transfer behavior in bistable [3]rotaxane. , 2010, Organic letters.

[77]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[78]  Emile Brabet,et al.  A pH-sensitive lasso-based rotaxane molecular switch. , 2013, Chemistry.

[79]  M. W. Hosseini,et al.  Strapped-porphyrin-based molecular turnstiles. , 2012, Chemistry.

[80]  V. Balzani,et al.  Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties , 1994 .

[81]  Maurizio Prato,et al.  Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.

[82]  Frédéric Coutrot,et al.  Recent Advances in the Chemical Synthesis of Lasso Molecular Switches , 2015 .

[83]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[84]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[85]  M. Mayor,et al.  Molecular daisy chains. , 2013, Chemical Society reviews.

[86]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[87]  J. F. Stoddart,et al.  Rotaxane-based molecular muscles. , 2014, Accounts of chemical research.

[88]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes in motion: Towards molecular machines , 2005 .

[89]  F. Coutrot,et al.  A pH-Sensitive Peptide-Containing Lasso Molecular Switch , 2013, Molecules.

[90]  Raluca M. Fratila,et al.  Triazolium cations: from the “click” pool to multipurpose applications , 2014 .

[91]  T. Takata,et al.  Fluorescence control of boron enaminoketonate using a rotaxane shuttle. , 2013, Organic letters.

[92]  R. Huisgen 1.3‐Dipolare Cycloadditionen Rückschau und Ausblick , 1963 .

[93]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[94]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[95]  R. Huisgen Kinetics and Mechanism of 1,3‐Dipolar Cycloadditions , 1963 .

[96]  Feihe Huang,et al.  A solvent-driven molecular spring , 2012 .

[97]  D. Leigh,et al.  A three-compartment chemically-driven molecular information ratchet. , 2012, Journal of the American Chemical Society.

[98]  A. Slawin,et al.  A chemically-driven molecular information ratchet. , 2008, Journal of the American Chemical Society.

[99]  Severin T. Schneebeli,et al.  Redox switchable daisy chain rotaxanes driven by radical-radical interactions. , 2014, Journal of the American Chemical Society.

[100]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[101]  M. F. Mayer,et al.  Actuator prototype: capture and release of a self-entangled [1]rotaxane. , 2010, Journal of the American Chemical Society.

[102]  H. Ågren,et al.  Two switchable star-shaped [1](n)rotaxanes with different multibranched cores. , 2014, Organic letters.

[103]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.