Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.

Gluconobacter oxydans DSM 2343 (ATCC 621H)catalyzes the oxidation of glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of the industrially important L-(+)-tartaric acid. To further increase 5-KGA production in G. oxydans, the mutant strain MF1 was used. In this strain the membrane-bound gluconate-2-dehydrogenase activity, responsible for formation of the undesired by-product 2-keto-D-gluconic acid, is disrupted. Therefore, high amounts of 5-KGA accumulate in the culture medium. G. oxydans MF1 was equipped with plasmids allowing the overexpression of the membrane-bound enzymes involved in 5-KGA formation. Overexpression was confirmed on the transcript and enzymatic level. Furthermore, the resulting strains overproducing the membrane-bound glucose dehydrogenase showed an increased gluconic acid formation, whereas the overproduction of gluconate-5-dehydrogenase resulted in an increase in 5-KGA of up to 230 mM. Therefore, these newly developed recombinant strains provide a basis for further improving the biotransformation process for 5-KGA production.

[1]  W. F. Fricke,et al.  Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans , 2005, Nature Biotechnology.

[2]  S. Velizarov,et al.  Production of free gluconic acid by cells ofGluconobacter oxydans , 1994, Biotechnology Letters.

[3]  H. Sahm,et al.  A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-d-gluconic acid , 2005, Applied Microbiology and Biotechnology.

[4]  T. Salusjärvi,et al.  Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain , 2004, Applied Microbiology and Biotechnology.

[5]  J. Buchert,et al.  Oxidative d-xylose metabolism of Gluconobacter oxydans , 1988, Applied Microbiology and Biotechnology.

[6]  W. Olijve,et al.  Analysis of growth of Gluconobacter oxydans in glucose containing media , 1979, Archives of Microbiology.

[7]  H. Sahm,et al.  Biotransformation of glucose to 5-keto-d-gluconic acid by recombinant Gluconobacter oxydans DSM 2343 , 2004, Applied Microbiology and Biotechnology.

[8]  Taro Miyazaki,et al.  Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization. , 2003, Biochimica et biophysica acta.

[9]  K. Matsushita,et al.  5-Keto-d-Gluconate Production Is Catalyzed by a Quinoprotein Glycerol Dehydrogenase, Major Polyol Dehydrogenase, in Gluconobacter Species , 2003, Applied and Environmental Microbiology.

[10]  Taro Miyazaki,et al.  Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic… , 2002, Bioscience, biotechnology, and biochemistry.

[11]  T. Hoshino,et al.  Purification and Properties of Membrane-bound D-Sorbitol Dehydrogenase from Gluconobacter suboxydans IFO 3255 , 2002, Bioscience, biotechnology, and biochemistry.

[12]  Anil Kumar,et al.  Gluconobacter oxydans: its biotechnological applications. , 2001, Journal of molecular microbiology and biotechnology.

[13]  L. Harvey,et al.  The Genus Gluconobacter and Its Applications in Biotechnology , 2001, Critical reviews in biotechnology.

[14]  K. Matsushita,et al.  Production of 5-keto- d-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound d-gluconate dehydrogenase 1 Dedicated to Professor Hideaki Yamada in honor of his 70th birthday. 1 , 1999 .

[15]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[16]  H. Sahm,et al.  Vanadate catalysed oxidation of 5-keto-d-gluconic acid to tartaric acid: the unexpected effect of phosphate and carbonate on rate and selectivity , 1995 .

[17]  H. Sahm,et al.  Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans , 1995, Journal of bacteriology.

[18]  C. Gomez-Sanchez,et al.  Improved downward capillary transfer for blotting of DNA and RNA. , 1994, BioTechniques.

[19]  K. Matsushita,et al.  Respiratory chains and bioenergetics of acetic acid bacteria. , 1994, Advances in microbial physiology.

[20]  H. Sahm,et al.  Incapability of Gluconobacter oxydans to produce tartaric acid. , 1992, Biotechnology and bioengineering.

[21]  H. Bestmann,et al.  Enzymatische Synthese chiraler C4‐Bausteine aus meso‐Weinsäure , 1991 .

[22]  J. P. Dijken,et al.  Role of NADP-dependent andquinoprotein glucose dehydrogenases ingluconic acid production byGluconobacter oxydans , 1989 .

[23]  K. Matsushita,et al.  Selective production of 5-keto- D-gluconate by Gluconobacter strains , 1983 .

[24]  K. Matsushita,et al.  D-Gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membrane-bound. , 1982, Methods in enzymology.

[25]  K. Matsushita,et al.  Purification and Characterization of 2-Keto-D-gluconate Dehydrogenase from Gluconobacter melanogenus , 1981 .

[26]  D. Seebach,et al.  Chirale elektrophile Synthesebausteine mit vier verschiedenen funktionellen Gruppen aus Weinsäure, 2, 3‐ und 3, 4‐Epoxy‐butandiolderivate in allen vier stereoisomeren Formen , 1981 .

[27]  K. Matsushita,et al.  D-Glucose Dehydrogenase of Gluconobacter suboxydans: Solubilization, Purification and Characterization , 1981 .

[28]  P. Pino,et al.  Some aspects of the catalytic synthesis of N-acyl-α-aminoacids by carbonylation of aldehydes in the presence of amides , 1979 .

[29]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[30]  E. Lennox,et al.  Transduction of linked genetic characters of the host by bacteriophage P1. , 1955, Virology.

[31]  H. R. Roberts,et al.  Studies on the production of 5-ketogluconic acid by Acetobacter suboxydans. , 1954, Applied microbiology.

[32]  F. Ullmann Enzyklopädie der technischen Chemie , 1928 .