Efficient Spectroscopy of Exoplanets at Small Angular Separations with Vortex Fiber Nulling

Instrumentation designed to characterize potentially habitable planets may combine adaptive optics and high-resolution spectroscopy techniques to achieve the highest possible sensitivity to spectral signs of life. Detecting the weak signal from a planet containing biomarkers will require exquisite control of the optical wavefront to maximize the planet signal and significantly reduce unwanted starlight. We present an optical technique, known as vortex fiber nulling (VFN), that allows polychromatic light from faint planets at extremely small separations from their host stars (≾λ/D) to be efficiently routed to a diffraction-limited spectrograph via a single-mode optical fiber, while light from the star is prevented from entering the spectrograph. VFN takes advantage of the spatial selectivity of a single-mode fiber to isolate the light from close-in companions in a small field of view around the star. We provide theoretical performance predictions of a conceptual design and show that VFN may be utilized to characterize planets detected by radial velocity (RV) instruments in the infrared without knowledge of the azimuthal orientation of their orbits. Using a spectral template-matching technique, we calculate an integration time of ~400, ~100, and ~30 hr for Ross 128 b with Keck, the Thirty Meter Telescope, and the Large Ultraviolet/Optical/Infrared Surveyor, respectively.

[1]  G. Ruane,et al.  The LUVOIR architecture "A" coronagraph instrument , 2017, Optical Engineering + Applications.

[2]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[3]  Konstantin Batygin,et al.  Constraints on the spin evolution of young planetary-mass companions , 2017 .

[4]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H2S AND SO2 PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES , 2013, 1302.6603.

[5]  Eugene Serabyn,et al.  Deep broad-band infrared nulling using a single-mode fiber beam combiner and baseline rotation , 2006, SPIE Astronomical Telescopes + Instrumentation.

[6]  Jacques-Robert Delorme,et al.  High-contrast spectroscopy testbed for segmented telescopes , 2018 .

[7]  Kevin France,et al.  Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study , 2016, Astronomical Telescopes + Instrumentation.

[8]  Sara Seager,et al.  THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES , 2012, 1204.1544.

[9]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[10]  James W. Beletic,et al.  H2RG focal plane array and camera performance update , 2012, Other Conferences.

[11]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[12]  Pierre Riaud,et al.  Improving Earth-like planets' detection with an ELT: the differential radial velocity experiment , 2007 .

[13]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[14]  O. Guyon,et al.  Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy , 2017, 1706.08821.

[15]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[16]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. III. PHOTOCHEMISTRY AND THERMOCHEMISTRY IN THICK ATMOSPHERES ON SUPER EARTHS AND MINI NEPTUNES , 2014, 1401.0948.

[17]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[18]  Bertrand Mennesson,et al.  IMPROVING INTERFEROMETRIC NULL DEPTH MEASUREMENTS USING STATISTICAL DISTRIBUTIONS: THEORY AND FIRST RESULTS WITH THE PALOMAR FIBER NULLER , 2011 .

[19]  N. Murakami,et al.  SPECTROSCOPIC CORONAGRAPHY FOR PLANETARY RADIAL VELOCIMETRY OF EXOPLANETS , 2014, 1404.5712.

[20]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[21]  Eugene Serabyn,et al.  Deep nulling of laser light with a single-mode-fiber beam combiner. , 2006, Applied optics.

[22]  Xavier Bonfils,et al.  A temperate exo-Earth around a quiet M dwarf at 3.4 parsec , 2017, 1711.06177.

[23]  B. Mennesson,et al.  Use of single-mode waveguides to correct the optical defects of a nulling interferometer. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  O. Guyon,et al.  On-sky closed loop correction of atmospheric dispersion for high-contrast coronagraphy and astrometry , 2017, 1710.11197.

[25]  Bernhard Brandl,et al.  The fast spin-rotation of a young extra-solar planet , 2014 .

[26]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[27]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[28]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[29]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[30]  Olivier Guyon,et al.  Ground-based adaptive optics coronagraphic performance under closed-loop predictive control , 2017, 1712.07189.

[31]  Shiladitya DasSarma,et al.  Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment , 2017, Astrobiology.

[32]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[33]  G. Ruane,et al.  A fiber injection unit for the Keck Planet Imager and Characterizer , 2017, Optical Engineering + Applications.

[34]  Eric Stadler,et al.  C-RED One : the infrared camera using the Saphira e-APD detector , 2016, Astronomical Telescopes + Instrumentation.

[35]  Bertrand Mennesson,et al.  Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements , 2018 .

[36]  Simon Thibault,et al.  SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope , 2014, Astronomical Telescopes and Instrumentation.

[37]  D. Mawet,et al.  Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit , 2017, 1703.00583.

[38]  Christoph U. Keller,et al.  The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments , 2016, 1610.04235.

[39]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[40]  Julien H. Girard,et al.  Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging , 2018, Astronomy & Astrophysics.

[41]  Frantz Martinache,et al.  On-sky demonstration of low-order wavefront sensing and control with focal plane phase mask coronagraphs , 2015 .

[42]  Dimitri Mawet,et al.  Observing Exoplanets with High Dispersion Coronagraphy. I. The Scientific Potential of Current and Next-generation Large Ground and Space Telescopes , 2017, 1703.00582.

[43]  A. Olivier,et al.  Improving Interferometric Null Depth Measurements using Statistical Distributions: Theory and First Results with the Palomar Fiber Nuller , 2011, 1103.4719.

[44]  M. Chun,et al.  Keck Planet Imager and Characterizer: concept and phased implementation , 2016, Astronomical Telescopes + Instrumentation.