Scale-Space Tracking of Critical Points in 3D Vector Fields

Scale-space techniques are very popular in image processing since they allow for the integrated analysis of image structure. The multi-scale approach enables one to distinguish between important features such as edges and small-scale features such as numerical artifacts or noise. In general, the same properties hold for vector fields such as flow data. Many flow features, e.g. vortices, can be observed on multiple scales of the data and also many features that can be detected are essentially artifacts of the employed interpolation scheme or originate from noise in the data. In this paper, we investigate an approach based on scale-space hierarchies of threedimensional vector fields. Our main interest concerns how vector field singularities can be tracked over multiple spatial scales in order to assess the importance of a critical point to the overall behavior of the underlying flow field.

[1]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[2]  Xavier Tricoche,et al.  Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.

[3]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[4]  Arjan Kuijper,et al.  The deep structure of Gaussian scale space images , 2002 .

[5]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[6]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[8]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[9]  Hans Hagen,et al.  C1-interpolation for vector field topology visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[10]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[11]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[12]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[15]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[16]  Luc Florack,et al.  Calculations on Critical Points under Gaussian Blurring , 1999, Scale-Space.

[17]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[18]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[19]  Mark Segal,et al.  Fast shadows and lighting effects using texture mapping , 1992, SIGGRAPH.

[20]  Gerik Scheuermann,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Localized Flow Analysis of 2d and 3d Vector Fields , 2022 .

[21]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[22]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[23]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[24]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[25]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[26]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[27]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[28]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.