The geometry of right angled Artin subgroups of mapping class groups

We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmuller space is a quasi-isometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus h surfaces (for any h at least 2) in the moduli space of genus g surfaces (for any g at least 3) for which the universal covers are quasi-isometrically embedded in the Teichmuller space.

[1]  K. Kodaira A certain type of irregular algebraic surfaces , 1967 .

[2]  K. Fujiwara Subgroups generated by two pseudo-Anosov elements in a mapping class group. I. Uniform exponential growth , 2008 .

[3]  Yair N. Minsky,et al.  Geometry of the complex of curves II: Hierarchical structure , 1998 .

[4]  Sang-hyun Kim On right-angled Artin groups without surface subgroups , 2008 .

[5]  Word hyperbolic extensions of surface groups , 2005, math/0505244.

[6]  John Crisp,et al.  Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups , 2003 .

[7]  Jason A. Behrstock,et al.  Geometry and rigidity of mapping class groups , 2008, 0801.2006.

[8]  Sang-hyun Kim Co-contractions of graphs and right-angled Artin groups , 2008 .

[9]  M. Thistlethwaite,et al.  Zariski dense surface subgroups in SL(3,Z) , 2011 .

[10]  Shadows Of Mapping Class Groups: Capturing Convex Cocompactness , 2005, math/0505114.

[11]  Canonical Metrics on the Moduli Space of Riemann Surfaces II , 2004, math/0403068.

[12]  B. Bowditch Atoroidal Surface Bundles Over Surfaces , 2009 .

[13]  A hyperbolic-by-hyperbolic hyperbolic group , 1997 .

[14]  Jeffrey F. Brock The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores , 2001 .

[15]  Thomas Koberda,et al.  Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups , 2010, 1007.1118.

[16]  C. McMullen The moduli space of Riemann surfaces is Kähler hyperbolic , 2000, math/0010022.

[17]  W. Harvey,et al.  SURFACE GROUPS INSIDE MAPPING CLASS GROUPS , 1999 .

[18]  Mark V. Sapir,et al.  Surface Subgroups of Right-Angled Artin Groups , 2007, Int. J. Algebra Comput..

[19]  E. Primrose,et al.  Subgroups of Teichmuller Modular Groups , 1992 .

[20]  The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group , 2000, math/0003133.

[21]  On Subgroups of the Pentagon Group , 2007 .

[22]  Representations of surface groups and right-angled Artin groups in higher rank , 2007, math/0701493.

[23]  J. Mangahas Uniform Uniform Exponential Growth of Subgroups of the Mapping Class Group , 2008, 0805.0133.

[24]  Elisabeth Ruth Green,et al.  Graph products of groups , 1990 .

[25]  A Combinatorial Model for the Teichmüller Metric , 2005, math/0509584.

[26]  Tim Hsu,et al.  On linear and residual properties of graph products. , 1999 .

[27]  Jason A. Behrstock,et al.  Centroids and the rapid decay property in mapping class groups , 2008, J. Lond. Math. Soc..

[28]  Ursula Hamenstaedt Geometry of the complex of curves and of Teichmüller space , 2007 .

[29]  A combination theorem for Veech subgroups of the mapping class group , 2004, math/0410041.

[30]  A “Tits-alternative” for subgroups of surface mapping class groups , 1985 .

[31]  Ruth Charney,et al.  An introduction to right-angled Artin groups , 2006, math/0610668.

[32]  Susan Hermiller,et al.  Algorithms and Geometry for Graph Products of Groups , 1995 .

[33]  Yair N. Minsky,et al.  Geometry of the complex of curves I: Hyperbolicity , 1998, math/9804098.

[34]  B. Servatius,et al.  Surface subgroups of graph groups , 1989 .

[35]  A comparison of metrics on Teichmüller space , 1974 .

[36]  A. Reid,et al.  Surface subgroups of Coxeter and Artin groups , 2004 .

[37]  Convex cocompact subgroups of mapping class groups , 2001, math/0106190.

[38]  Jason A. Behrstock Asymptotic Geometry of the Mapping Class Group and Teichmuller Space , 2005, math/0502367.