Estimators for a Poisson parameter using ranked set sampling

Using ranked set sampling, a viable BLUE estimator is obtained for estimating the mean of a Poisson distribution. Its properties, such as efficiency relative to the ranked set sample mean and to the maximum likelihood estimator, have been calculated for different sample sizes and values of the Poisson parameter. The estimator (termed the normal modified r.s.s. estimator is more efficient than both the ranked set sample mean and the MLE. It is recommended as a reasonable estimator of the Poisson mean ( u ) to be used in a ranked set sampling environment.

[1]  Lynne Stokes,et al.  Parametric ranked set sampling , 1995, Annals of the Institute of Statistical Mathematics.

[2]  H. Nagaraja,et al.  Order Statistics from Discrete Distributions , 1992 .

[3]  Narayanaswamy Balakrishnan,et al.  Order Statistics and Inference: Estimation Methods. , 1992 .

[4]  Vic Barnett,et al.  Best linear unbiased estimates in ranked-set sampling with particular reference to imperfect ordering , 1997 .

[5]  Estimation of parameters of the extreme value distribution using ranked set sampling , 1997 .

[6]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[7]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[8]  M. Ahsanullah,et al.  Estimation of Parameters of the Generalized Geometric Distribution Using Ranked Set Sampling , 1996 .

[9]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[10]  G. McIntyre,et al.  A method for unbiased selective sampling, using ranked sets , 1952 .

[11]  E. Melnick Moments of ranked discrete variables with an application to independent poisson variates , 1980 .

[12]  J. L. Clutter,et al.  Ranked Set Sampling Theory with Order Statistics Background , 1972 .

[13]  N. Balakrishnan Order statistics from discrete distributions , 1986 .

[14]  S. Gupta,et al.  On moments of order statistics from independent binomial populations , 1974 .

[15]  Narayanaswamy Balakrishnan,et al.  Relations, Bounds and Approximations for Order Statistics , 1989 .

[16]  E. H. Lloyd LEAST-SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS , 1952 .

[17]  A. W. Swan Handbook of Statistical Tables , 1964 .

[18]  D. Owen,et al.  Handbook of Statistical Tables. , 1962 .

[19]  K. SinhaBimal,et al.  ON SOME ASPECTS OF RANKED SET SAMPLING FOR ESTIMATION OF NORMAL AND EXPONENTIAL PARAMETERS , 1996 .