Steerable Features for Statistical 3D Dendrite Detection

Most state-of-the-art algorithms for filament detection in 3-D image-stacks rely on computing the Hessian matrix around individual pixels and labeling these pixels according to its eigenvalues. This approach, while very effective for clean data in which linear structures are nearly cylindrical, loses its effectiveness in the presence of noisy data and irregular structures. In this paper, we show that using steerable filters to create rotationally invariant features that include higher-order derivatives and training a classifier based on these features lets us handle such irregular structures. This can be done reliably and at acceptable computational cost and yields better results than state-of-the-art methods.

[1]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  E Meijering,et al.  Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[3]  Guido Gerig,et al.  Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1998, Medical Image Anal..

[4]  J. van Pelt,et al.  Analysis of tubular structures in three-dimensional confocal images , 2002, Network.

[5]  Mathews Jacob,et al.  Design of steerable filters for feature detection using canny-like criteria , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Gady Agam,et al.  Probabilistic modeling based vessel enhancement in thoracic CT scans , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[8]  Nicholas Ayache,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007, 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part I , 2007, MICCAI.

[9]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[10]  Anca Dima,et al.  Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform , 2002, IEEE Trans. Image Process..

[11]  Ioannis A. Kakadiaris,et al.  Automatic Centerline Extraction of Irregular Tubular Structures Using Probability Volumes from Multiphoton Imaging , 2007, MICCAI.

[12]  Guido Gerig,et al.  3D Multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1997, CVRMed.

[13]  Khalid A. Al-Kofahi,et al.  Rapid automated three-dimensional tracing of neurons from confocal image stacks , 2002, IEEE Transactions on Information Technology in Biomedicine.

[14]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[15]  Badrinath Roysam,et al.  Robust 3-D Modeling of Vasculature Imagery Using Superellipsoids , 2007, IEEE Transactions on Medical Imaging.

[16]  Mathews Jacob,et al.  Three-dimensional feature detection using optimal steerable filters , 2005, IEEE International Conference on Image Processing 2005.