Proof of Komlós's conjecture on Hamiltonian subsets

Abstract Komlos conjectured in 1981 that among all graphs with minimum degree at least d, the complete graph K d + 1 minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when d is sufficiently large. In fact we prove a stronger result: for large d, any graph G with average degree at least d contains almost twice as many Hamiltonian subsets as K d + 1 , unless G is isomorphic to K d + 1 or a certain other graph which we specify.

[1]  Béla Csaba,et al.  On the Bollobás–Eldridge Conjecture for Bipartite Graphs , 2007, Combinatorics, Probability and Computing.

[2]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[3]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[4]  Hong Liu,et al.  Local Conditions for Exponentially Many Subdivisions , 2016, Combinatorics, Probability and Computing.

[5]  Daniela Kühn,et al.  Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments , 2012, ArXiv.

[6]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[7]  D. Kuhn,et al.  Hamilton cycles in graphs and hypergraphs: an extremal perspective , 2014, 1402.4268.

[8]  D. Kuhn,et al.  Proof of the 1-factorization and Hamilton Decomposition Conjectures , 2014, 1401.4183.

[9]  M. Knor ON THE NUMBER OF CYCLES IN k -CONNECTED GRAPHS , 1994 .

[10]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[11]  Carsten Thomassen,et al.  On the Number of Cycles in 3-Connected Cubic Graphs , 1997, J. Comb. Theory, Ser. B.

[12]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[13]  Richard Montgomery,et al.  Logarithmically small minors and topological minors , 2013, J. Lond. Math. Soc..

[14]  Alex D. Scott,et al.  Maximising the number of induced cycles in a graph , 2016, J. Comb. Theory, Ser. B.

[15]  Hong Liu,et al.  Subdivisions of a large clique in C6-free graphs , 2013, J. Comb. Theory, Ser. B.

[16]  Zsolt Tuza,et al.  Problems on cycles and colorings , 2013, Discrete Mathematics.

[17]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[18]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[19]  Bill Cuckler,et al.  Hamiltonian cycles in Dirac graphs , 2009, Comb..

[20]  W. Ahrens Ueber das Gleichungssystem einer Kirchhoff'schen galvanischen Stromverzweigung , 1897 .

[21]  Hong Liu,et al.  A proof of Mader's conjecture on large clique subdivisions in C4 ‐free graphs , 2016, J. Lond. Math. Soc..

[22]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[23]  L. Volkmann Estimations for the number of cycles in a graph , 1996 .

[24]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[25]  Daniela Kühn,et al.  Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.

[26]  JANOS KOMLOS,et al.  Topological cliques in graphs II , 1994, Combinatorics, Probability and Computing.

[27]  Daniela Kühn,et al.  Hamilton decompositions of regular expanders: Applications , 2012, J. Comb. Theory, Ser. B.

[28]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[29]  David S. Gunderson,et al.  Triangle-free graphs with the maximum number of cycles , 2015, Discret. Math..

[30]  D. Kuhn,et al.  A blow-up lemma for approximate decompositions , 2016, Transactions of the American Mathematical Society.

[31]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.