Isogeometric Compatible Discretizations for Viscous Incompressible Flow
暂无分享,去创建一个
[1] W. Thomson. VI.—On Vortex Motion , 1868, Transactions of the Royal Society of Edinburgh.
[2] W. Wolibner. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .
[3] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[4] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .
[5] R. D. Vogelaere,et al. Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .
[6] D. J. Benney,et al. Stability of Spatially Varying and Time‐Dependent Flows , 1964 .
[7] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[8] V. Arnold. Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid , 1969 .
[9] H. K. Moffatt,et al. The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.
[10] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[11] H. Swann. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .
[12] Tosio Kato. Nonstationary flows of viscous and ideal fluids in R3 , 1972 .
[13] R. Kraichnan. Helical turbulence and absolute equilibrium , 1973, Journal of Fluid Mechanics.
[14] M. Lesieur,et al. Influence of helicity on the evolution of isotropic turbulence at high Reynolds number , 1977, Journal of Fluid Mechanics.
[15] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[16] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[17] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[18] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[19] S. Orszag,et al. Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.
[20] J. Marsden,et al. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .
[21] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[22] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[23] Jean E. Roberts,et al. Global estimates for mixed methods for second order elliptic equations , 1985 .
[24] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[25] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[26] A. Kerstein,et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .
[27] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[28] H. K. Moffatt. Fixed points of turbulent dynamical systems and suppression of nonlinearity , 1990 .
[29] T. Tezduyar,et al. Numerical Experiments on Downstream Boundary of Flow Past Cylinder , 1991 .
[30] C. Meneveau,et al. The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.
[31] T. A. Zang,et al. On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .
[32] H. K. Moffatt,et al. Helicity in Laminar and Turbulent Flow , 1992 .
[33] H. K. Moffatt,et al. The Helicity of a Knotted Vortex Filament , 1992 .
[34] Robert McDougall Kerr. Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .
[35] H. K. Moffatt. Spiral structures in turbulent flow , 1993 .
[36] H. K. Moffatt,et al. Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics , 1994, Journal of Fluid Mechanics.
[37] C. Norberg. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio , 1994, Journal of Fluid Mechanics.
[38] E. Titi,et al. Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations , 1995 .
[39] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[40] Charles R. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[41] C. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[42] S. Mittal,et al. Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries , 1995 .
[43] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[44] C. Fefferman,et al. Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .
[45] Lagrangian description, symplectic structure, and invariants of 3D fluid flow , 1997 .
[46] Salvatore Caorsi,et al. On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..
[47] H. Kozono,et al. Limiting Case of the Sobolev Inequality in BMO,¶with Application to the Euler Equations , 2000 .
[48] Daniel Boffi,et al. A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..
[49] C. Foias,et al. Energy dissipation in body-forced turbulence , 2001, Journal of Fluid Mechanics.
[50] T. Hou,et al. Geometric Properties and Nonblowup of 3D Incompressible Euler Flow , 2004, math-ph/0402032.
[51] Douglas N. Arnold,et al. Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..
[52] T. Hou,et al. Improved Geometric Conditions for Non-Blowup of the 3D Incompressible Euler Equation , 2006 .
[53] John C. Adams,et al. An Attempt to Test the Theories of Capillary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid , 2007 .
[54] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[55] D. Vieru,et al. Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains , 2007 .
[56] Numerical study on the Eulerian–Lagrangian analysis of Navier–Stokes turbulence , 2008 .
[57] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[58] The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure , 2009 .
[59] John A. Evans,et al. Enforcement of constraints and maximum principles in the variational multiscale method , 2009 .
[60] L. Berselli,et al. On the regularity of the solutions to the 3D Navier–Stokes equations: a remark on the role of the helicity , 2009 .
[61] Y. Kaneda,et al. Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation , 2009 .
[62] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[63] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[64] John A. Evans,et al. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .
[65] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[66] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[67] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .