Engineered biomimicry for harvesting solar energy: a bird's eye view

All three methodologies of engineered biomimicry – bioinspiration, biomimetics, and bioreplication – are represented in current research on harvesting solar energy. Both processes and porous surfaces inspired by plants and certain marine animals, respectively, are being investigated for solar cells. Whereas dye-sensitized solar cells deploy artificial photosynthesis, bioinspired nanostructuring of materials in solar cells improves performance. Biomimetically textured coatings for solar cells have been shown to reduce optical reflectance and increase optical absorptance over a broad spectral regime. Compound lenses fabricated by a bioreplication technique offer similar promise for reduced reflectance by increasing the angular field of view.

[1]  Akhlesh Lakhtakia,et al.  Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics , 2008 .

[2]  David M. Sowders,et al.  Optical reflectance reduction of textured silicon surfaces coated with an antireflective thin film , 1996 .

[3]  Zhao Wang,et al.  Hollow Urchin‐like ZnO thin Films by Electrochemical Deposition , 2010, Advanced materials.

[4]  T. Chappell The V-groove multijunction solar cell , 1979, IEEE Transactions on Electron Devices.

[5]  J. M. Martínez-Duart,et al.  Antireflective porous-silicon coatings for multicrystalline solar cells: the effects of chemical etching and rapid thermal processing , 2001 .

[6]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[7]  Martin A. Green,et al.  High performance light trapping textures for monocrystalline silicon solar cells , 2001 .

[8]  N. Yamada,et al.  Optimization of anti‐reflection moth‐eye structures for use in crystalline silicon solar cells , 2011 .

[9]  P. Verlinden,et al.  The Surface Texturization of Solar-cells - a New Method Using V-grooves With Controllable Sidewall Angles , 1992 .

[10]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[11]  Willem L. Vos,et al.  Broad‐band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods , 2009 .

[12]  Akhlesh Lakhtakia,et al.  Mass fabrication technique for polymeric replicas of arrays of insect corneas , 2010, Bioinspiration & biomimetics.

[13]  Bryce S. Richards,et al.  Comparison of TiO2 and other dielectric coatings for buried‐contact solar cells: a review , 2004 .

[14]  Francesco Chiadini,et al.  Simulation and analysis of prismatic bioinspired compound lenses for solar cells: II. Multifrequency analysis , 2011, Bioinspiration & biomimetics.

[15]  A. Lakhtakia,et al.  Replication of fly eyes by the conformal-evaporated-film-by-rotation technique , 2008, Nanotechnology.

[16]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[17]  David Reinhoudt,et al.  What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. , 2007, Chemical Society reviews.

[18]  A. Lakhtakia,et al.  Improved conformal coatings by oblique-angle deposition for bioreplication , 2009 .

[19]  Insect Eyes Inspire Improved Solar Cells , 2011 .

[20]  Hideki Masuda,et al.  Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module. , 2011, Optics express.

[21]  Akhlesh Lakhtakia,et al.  Background and survey of bioreplication techniques , 2011, Bioinspiration & biomimetics.

[22]  A. Lakhtakia,et al.  Biologically inspired achromatic waveplates for visible light. , 2011, Nature communications.

[23]  Yoseph Bar-Cohen,et al.  Biologically inspired intelligent robots , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  Jinyun Liu,et al.  A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. , 2010, Chemical communications.

[25]  Lar,et al.  Reproduction , 1975, Comprehensive Virology.

[26]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[27]  F. Chiadini,et al.  Simulation and analysis of prismatic bioinspired compound lenses for solar cells , 2010, Bioinspiration & biomimetics.

[28]  A. Parker,et al.  The diversity and implications of animal structural colours. , 1998, The Journal of experimental biology.

[29]  Peng Jiang,et al.  Biomimetic subwavelength antireflective gratings on GaAs. , 2008, Optics letters.

[30]  Harold Dekkers,et al.  Etching, texturing and surface decoupling for the next generation of Si solar cells , 2008 .

[31]  J. M. Martnez-Duart,et al.  Photodetectors and Solar Cells Based on Porous Silicon , 2002 .

[32]  Yuji Kuwahara,et al.  Reproduction, mass production, and control of the Morpho butterfly's blue , 2009, MOEMS-MEMS.

[33]  B. S. Thornton,et al.  Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design , 1975 .

[34]  Stuart A. Boden,et al.  Optimization of moth‐eye antireflection schemes for silicon solar cells , 2010 .

[35]  Jin-Hua Huang,et al.  Silicon Nitride Nanopillars and Nanocones Formed by Nickel Nanoclusters and Inductively Coupled Plasma Etching for Solar Cell Application , 2009 .

[36]  A. Lakhtakia,et al.  Nanotechnology: A Crash Course , 2010 .

[37]  Peng Jiang,et al.  Bioinspired Self‐Cleaning Antireflection Coatings , 2008 .

[38]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[39]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[40]  David Quéré,et al.  Non-sticking drops , 2005 .

[41]  Akhlesh Lakhtakia,et al.  Structural colors, cosmetics, and fabrics , 2009, NanoScience + Engineering.

[42]  Michael H. Bartl,et al.  Oxide-based photonic crystals from biological templates , 2009, NanoScience + Engineering.

[43]  M. Kuittinen,et al.  A wide-angle antireflection surface for the visible spectrum , 2009, Nanotechnology.