Seismic data interpolation using a fast generalized Fourier transform

We have found a fast and efficient method for the interpolation of nonstationary seismic data. The method uses the fast generalized Fourier transform (FGFT) to identify the space-wavenumber evolution of nonstationary spatial signals at each temporal frequency. The nonredundant nature of FGFT renders a big computational advantage to this interpolation method. A least-squares fitting scheme is used next to retrieve the optimal FGFT coefficients representative of the ideal interpolated data. For randomly sampled data on a regular grid, we seek a sparse representation of FGFT coefficients to retrieve the missing samples. In addition, to interpolate the regularly sampled seismic data at a given frequency, we use a mask function derived from the FGFT coefficients of the low frequencies. Synthetic and real data examples can be used to examine the performance of the method.

[1]  Mauricio D. Sacchi,et al.  f-x adaptive seismic-trace interpolation , 2009 .

[2]  Milton J. Porsani,et al.  Seismic Trace Interpolation In the F-x Domain Using Half-step Prediction Filters , 1997 .

[3]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[4]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[5]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[6]  Gilles Darche Spatial Interpolation Using a Fast Parabolic Transform , 1990 .

[7]  M. L. Lauzon,et al.  A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly , 2010, IEEE Transactions on Signal Processing.

[8]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[9]  David C. Henley,et al.  Gabor Deconvolution Revisited , 2003 .

[10]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  Ray Abma,et al.  Comparisons of interpolation methods , 2005 .

[13]  Mauricio D. Sacchi,et al.  On sampling functions and Fourier reconstruction methods , 2010 .

[14]  A. Gisolf,et al.  Fourier reconstruction of marine-streamer data in four spatial coordinates , 2006 .

[15]  T. Owen Book reviewEarth soundings analysis , 1993 .

[16]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[17]  Alexander V. Tikhonov,et al.  Ill-Posed Problems in Natural Sciences , 1989 .

[18]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[19]  J. Scales,et al.  Robust methods in inverse theory , 1988 .

[20]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[21]  C. O. H. Hindriks,et al.  Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .

[22]  Michael Clausen,et al.  Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..

[23]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[24]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[25]  Bin Liu,et al.  Multi-dimensional reconstruction of seismic data , 2004 .