Approaching the Quantum Limit of a Nanomechanical Resonator

By coupling a single-electron transistor to a high–quality factor, 19.7-megahertz nanomechanical resonator, we demonstrate position detection approaching that set by the Heisenberg uncertainty principle limit. At millikelvin temperatures, position resolution a factor of 4.3 above the quantum limit is achieved and demonstrates the near-ideal performance of the single-electron transistor as a linear amplifier. We have observed the resonator's thermal motion at temperatures as low as 56 millikelvin, with quantum occupation factors of NTH = 58. The implications of this experiment reach from the ultimate limits of force microscopy to qubit readout for quantum information devices.

[1]  A D Stone,et al.  Resonant cooper-pair tunneling: quantum noise and measurement characteristics. , 2002, Physical review letters.

[2]  I. Martin,et al.  Quantum-classical transition induced by electrical measurement. , 2002, Physical review letters.

[3]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[4]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[5]  G. Harry,et al.  Two-stage superconducting-quantum-interference-device amplifier in a high-Q gravitational wave transducer , 1999, cond-mat/9910337.

[6]  Miles P. Blencowe,et al.  Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor , 2000 .

[7]  Willett,et al.  Evading amplifier noise in nonlinear oscillators. , 1994, Physical review letters.

[8]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[9]  Y. Zhang,et al.  Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor , 2004 .

[10]  M. Pinard,et al.  High-sensitivity optical measurement of mechanical Brownian motion , 1999, quant-ph/9901056.

[11]  Korotkov Intrinsic noise of the single-electron transistor. , 1994, Physical review. B, Condensed matter.

[12]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[13]  Anthony J Leggett,et al.  Testing the limits of quantum mechanics: motivation, state of play, prospects , 2002 .

[14]  L. Sekaric,et al.  Dissipation in nanocrystalline-diamond nanomechanical resonators , 2004 .

[15]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[16]  R. Peierls,et al.  Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie , 1931 .

[17]  C. Beenakker,et al.  Electromechanical noise in a diffusive conductor. , 2001, Physical review letters.

[18]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[19]  Jukka P. Pekola,et al.  Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures , 1998 .

[20]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[21]  J. Ashby References and Notes , 1999 .

[22]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[23]  K. Schwab,et al.  Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system , 2003, cond-mat/0301252.