Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
暂无分享,去创建一个
Reinhold Schneider | Martin Eigel | Manuel Marschall | Max Pfeffer | R. Schneider | M. Eigel | Max Pfeffer | M. Marschall
[1] Hermann G. Matthies,et al. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.
[2] Reinhold Schneider,et al. Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.
[3] Max Pfeffer. Tensor methods for the numerical solution of high-dimensional parametric partial differential equations , 2018 .
[4] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[5] Anthony Nouy,et al. Chapter 4: Low-Rank Methods for High-Dimensional Approximation and Model Order Reduction , 2017 .
[6] Anthony Nouy,et al. Low-rank methods for high-dimensional approximation and model order reduction , 2015, 1511.01554.
[7] Frances Y. Kuo,et al. Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..
[8] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[9] Howard C. Elman,et al. Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..
[10] Juan Galvis,et al. Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity , 2009, SIAM J. Numer. Anal..
[11] Reinhold Schneider,et al. Tensor Spaces and Hierarchical Tensor Representations , 2014 .
[12] David J. Silvester,et al. Efficient Adaptive Stochastic Galerkin Methods for Parametric Operator Equations , 2016, SIAM J. Sci. Comput..
[13] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[14] Bart Vandereycken,et al. Low-rank tensor completion by Riemannian optimization , 2014 .
[15] HELMUT HARBRECHT,et al. On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion , 2016, Math. Comput..
[16] Tim Wildey,et al. Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.
[17] E. Ullmann. Solution strategies for stochastic finite element discretizations , 2008 .
[18] Yoshihito Kazashi,et al. Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.
[19] Serge Prudhomme,et al. Adaptive surrogate modeling for response surface approximations with application to bayesian inference , 2015, Adv. Model. Simul. Eng. Sci..
[20] Michel Loève,et al. Probability Theory I , 1977 .
[21] Claude Jeffrey Gittelson,et al. A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .
[22] Christoph Schwab,et al. QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs , 2016 .
[23] Hans-Jörg Starkloff,et al. ON THE CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD FOR RANDOM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .
[24] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[25] Christoph Schwab,et al. N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .
[26] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[27] Fabio Nobile,et al. A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method , 2018, SIAM J. Numer. Anal..
[28] Paul Malliavin,et al. Stochastic Analysis , 1997, Nature.
[29] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[30] Gianluca Detommaso,et al. Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies , 2018, SIAM/ASA J. Uncertain. Quantification.
[31] L. Herrmann,et al. Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.
[32] Catherine Elizabeth Powell,et al. Energy Norm A Posteriori Error Estimation for Parametric Operator Equations , 2014, SIAM J. Sci. Comput..
[33] Hermann G. Matthies,et al. Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..
[34] Catherine E. Powell,et al. Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation , 2018, SIAM J. Sci. Comput..
[35] Martin Eigel,et al. An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data , 2016, SIAM/ASA J. Uncertain. Quantification.
[36] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2014 .
[37] Martin Eigel,et al. Local Equilibration Error Estimators for Guaranteed Error Control in Adaptive Stochastic Higher-Order Galerkin Finite Element Methods , 2016, SIAM/ASA J. Uncertain. Quantification.
[38] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[39] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.
[40] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2013 .
[41] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[42] Robert Scheichl,et al. A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.
[43] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[44] R. Schneider,et al. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations , 2018 .
[45] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[46] C. J. Gittelson. STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .
[47] André Uschmajew,et al. Line-search methods and rank increase on low-rank matrix varieties , 2014 .
[48] Helmut Harbrecht,et al. Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient , 2016, SIAM/ASA J. Uncertain. Quantification.
[49] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[50] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..