Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm.

[1]  Hermann G. Matthies,et al.  Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.

[2]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[3]  Max Pfeffer Tensor methods for the numerical solution of high-dimensional parametric partial differential equations , 2018 .

[4]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[5]  Anthony Nouy,et al.  Chapter 4: Low-Rank Methods for High-Dimensional Approximation and Model Order Reduction , 2017 .

[6]  Anthony Nouy,et al.  Low-rank methods for high-dimensional approximation and model order reduction , 2015, 1511.01554.

[7]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[8]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[9]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[10]  Juan Galvis,et al.  Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity , 2009, SIAM J. Numer. Anal..

[11]  Reinhold Schneider,et al.  Tensor Spaces and Hierarchical Tensor Representations , 2014 .

[12]  David J. Silvester,et al.  Efficient Adaptive Stochastic Galerkin Methods for Parametric Operator Equations , 2016, SIAM J. Sci. Comput..

[13]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[14]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[15]  HELMUT HARBRECHT,et al.  On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion , 2016, Math. Comput..

[16]  Tim Wildey,et al.  Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.

[17]  E. Ullmann Solution strategies for stochastic finite element discretizations , 2008 .

[18]  Yoshihito Kazashi,et al.  Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.

[19]  Serge Prudhomme,et al.  Adaptive surrogate modeling for response surface approximations with application to bayesian inference , 2015, Adv. Model. Simul. Eng. Sci..

[20]  Michel Loève,et al.  Probability Theory I , 1977 .

[21]  Claude Jeffrey Gittelson,et al.  A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .

[22]  Christoph Schwab,et al.  QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs , 2016 .

[23]  Hans-Jörg Starkloff,et al.  ON THE CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD FOR RANDOM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .

[24]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[25]  Christoph Schwab,et al.  N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .

[26]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[27]  Fabio Nobile,et al.  A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method , 2018, SIAM J. Numer. Anal..

[28]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[29]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[30]  Gianluca Detommaso,et al.  Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies , 2018, SIAM/ASA J. Uncertain. Quantification.

[31]  L. Herrmann,et al.  Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[32]  Catherine Elizabeth Powell,et al.  Energy Norm A Posteriori Error Estimation for Parametric Operator Equations , 2014, SIAM J. Sci. Comput..

[33]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[34]  Catherine E. Powell,et al.  Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation , 2018, SIAM J. Sci. Comput..

[35]  Martin Eigel,et al.  An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data , 2016, SIAM/ASA J. Uncertain. Quantification.

[36]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2014 .

[37]  Martin Eigel,et al.  Local Equilibration Error Estimators for Guaranteed Error Control in Adaptive Stochastic Higher-Order Galerkin Finite Element Methods , 2016, SIAM/ASA J. Uncertain. Quantification.

[38]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[39]  Reinhold Schneider,et al.  Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.

[40]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2013 .

[41]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[42]  Robert Scheichl,et al.  A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.

[43]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[44]  R. Schneider,et al.  Sampling-free Bayesian inversion with adaptive hierarchical tensor representations , 2018 .

[45]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[46]  C. J. Gittelson STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .

[47]  André Uschmajew,et al.  Line-search methods and rank increase on low-rank matrix varieties , 2014 .

[48]  Helmut Harbrecht,et al.  Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient , 2016, SIAM/ASA J. Uncertain. Quantification.

[49]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[50]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..