Distinct Roles for Condensin’s Two ATPase Sites in Chromosome Condensation

[1]  Jacob W. J. Kerssemakers,et al.  DNA-loop extruding condensin complexes can traverse one another , 2019, Nature.

[2]  B. Simon,et al.  Structural Basis of an Asymmetric Condensin ATPase Cycle , 2019, Molecular cell.

[3]  C. Haering,et al.  Towards a Unified Model of SMC Complex Function , 2018, Current Biology.

[4]  A. Kruse,et al.  In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. , 2018, Molecular cell.

[5]  Marjon S. van Ruiten,et al.  SMC Complexes: Universal DNA Looping Machines with Distinct Regulators. , 2018, Trends in genetics : TIG.

[6]  M. Tyers,et al.  Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability , 2018, PLoS biology.

[7]  F. Uhlmann,et al.  Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex , 2018, Cell reports.

[8]  Neva C. Durand,et al.  The Energetics and Physiological Impact of Cohesin Extrusion , 2018, Cell.

[9]  Cees Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[10]  J. Ellenberg,et al.  A quantitative map of human Condensins provides new insights into mitotic chromosome architecture , 2018, bioRxiv.

[11]  Anastasia Baryshnikova,et al.  Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome. , 2018, Cell systems.

[12]  J. R. Paulson,et al.  A pathway for mitotic chromosome formation , 2018, Science.

[13]  D. Sherratt,et al.  MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin , 2018, eLife.

[14]  C. Dekker,et al.  Real‐time detection of condensin‐driven DNA compaction reveals a multistep binding mechanism , 2017, The EMBO journal.

[15]  Shveta Bisht,et al.  Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes , 2017, Cell.

[16]  Cees Dekker,et al.  The condensin complex is a mechanochemical motor that translocates along DNA , 2017, Science.

[17]  Raquel A. Oliveira,et al.  Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation , 2017, eLife.

[18]  Peter H. L. Krijger,et al.  The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension , 2017, Cell.

[19]  M. Laub,et al.  CHROMOSOMES: Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus , 2017 .

[20]  Jan Ellenberg,et al.  Sister chromatid resolution is an intrinsic part of chromosome organization in prophase , 2016, Nature Cell Biology.

[21]  K. Hopfner Invited review: Architectures and mechanisms of ATP binding cassette proteins , 2016, Biopolymers.

[22]  F. Uhlmann SMC complexes: from DNA to chromosomes , 2016, Nature Reviews Molecular Cell Biology.

[23]  T. Hirano,et al.  Condensin-Based Chromosome Organization from Bacteria to Vertebrates , 2016, Cell.

[24]  K. Nasmyth,et al.  Releasing Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation , 2016, Molecular cell.

[25]  K. Nasmyth,et al.  Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening , 2016, Molecular cell.

[26]  C. Haering,et al.  SnapShot: SMC Protein Complexes Part I , 2016, Cell.

[27]  F. Uhlmann,et al.  DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism , 2015, Cell.

[28]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[29]  G. Superti-Furga,et al.  Gene essentiality and synthetic lethality in haploid human cells , 2015, Science.

[30]  V. Guacci,et al.  The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering , 2015, eLife.

[31]  Tetsuya J. Kobayashi,et al.  Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. , 2015, Developmental cell.

[32]  K. Nishide,et al.  Overlapping and Non-overlapping Functions of Condensins I and II in Neural Stem Cell Divisions , 2014, PLoS genetics.

[33]  J. Peters,et al.  Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation , 2014, Current Biology.

[34]  M. Beck,et al.  Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits , 2014, Nature Structural &Molecular Biology.

[35]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[36]  T. Hirano,et al.  Condensin II initiates sister chromatid resolution during S phase , 2013, The Journal of cell biology.

[37]  T. Hirano Condensins: universal organizers of chromosomes with diverse functions. , 2012, Genes & development.

[38]  Owen J. Marshall,et al.  Contrasting roles of condensin I and condensin II in mitotic chromosome formation , 2012, Journal of Cell Science.

[39]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[40]  J. Dye,et al.  Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 , 2011, Nature.

[41]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[42]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Relocating Cohesin from Sites Occupied by Its Scc2/4 Loading Complex , 2011, Current Biology.

[43]  J. Rappsilber,et al.  Explorer Molecular and Genetic Analysis of Condensin Function in Vertebrate Cells , 2017 .

[44]  T. Hirano,et al.  Reconstitution and subunit geometry of human condensin complexes , 2007, The EMBO journal.

[45]  J. Ellenberg,et al.  Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells , 2006, Current Biology.

[46]  A. Strunnikov,et al.  Condensin Binding at Distinct and Specific Chromosomal Sites in the Saccharomyces cerevisiae Genome , 2005, Molecular and Cellular Biology.

[47]  K. Nasmyth,et al.  The structure and function of SMC and kleisin complexes. , 2005, Annual review of biochemistry.

[48]  J. Ellenberg,et al.  Distinct functions of condensin I and II in mitotic chromosome assembly , 2004, Journal of Cell Science.

[49]  T. Hirano,et al.  Real-Time Detection of Single-Molecule DNA Compaction by Condensin I , 2004, Current Biology.

[50]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[51]  D. Koshland,et al.  In vivo dissection of the chromosome condensation machinery , 2002, The Journal of cell biology.

[52]  D. Koshland,et al.  SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. , 1995, Genes & development.

[53]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[54]  W. Earnshaw,et al.  ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure , 1994, The Journal of cell biology.