Innovation and nested preferential growth in chess playing behavior
暂无分享,去创建一个
Orlando V. Billoni | Hang-Hyun Jo | Ana L. Schaigorodsky | Juan I. Perotti | Hang-Hyun Jo | O. Billoni | J. I. Perotti | A. L. Schaigorodsky | Hang-Hyun Jo
[1] Bernd Blasius,et al. Zipf's law in the popularity distribution of chess openings. , 2007, Physical review letters.
[2] Haroldo V. Ribeiro,et al. Move-by-Move Dynamics of the Advantage in Chess Matches Reveals Population-Level Learning of the Game , 2012, PloS one.
[3] Wolfgang Wildgen,et al. The Evolution of Human Language: Scenarios, principles, and cultural dynamics , 2004 .
[4] Z. Neda,et al. Measuring preferential attachment in evolving networks , 2001, cond-mat/0104131.
[5] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[6] G. Cecchi,et al. Scale-free brain functional networks. , 2003, Physical review letters.
[7] Juan I. Perotti,et al. Memory and long-range correlations in chess games , 2013, 1307.0729.
[8] J. Toner,et al. Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.
[9] Joshua B. Plotkin,et al. The Origins of Evolutionary Innovations , 2012 .
[10] Derek de Solla Price,et al. A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..
[11] S. Fortunato,et al. Scaling and universality in proportional elections. , 2006, Physical review letters.
[12] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[13] Julio M. Ottino,et al. Complex networks , 2004, Encyclopedia of Big Data.
[14] Linyuan Lü,et al. Zipf's Law Leads to Heaps' Law: Analyzing Their Relation in Finite-Size Systems , 2010, PloS one.
[15] Vittorio Loreto,et al. Collective dynamics of social annotation , 2009, Proceedings of the National Academy of Sciences.
[16] H. S. Heaps,et al. Information retrieval, computational and theoretical aspects , 1978 .
[17] G. Yule,et al. A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .
[18] Mariano Sigman,et al. Response Time Distributions in Rapid Chess: A Large-Scale Decision Making Experiment , 2010, Front. Neurosci..
[19] Filippo Menczer,et al. Modeling Statistical Properties of Written Text , 2009, PloS one.
[20] J. Krug,et al. Accessibility percolation on n-trees , 2013, 1302.1423.
[21] Marcelo A. Montemurro,et al. Dynamics of Text Generation with Realistic Zipf's Distribution , 2002, J. Quant. Linguistics.
[22] Kathryn Graziano. The innovator's dilemma: When new technologies cause great firms to fail , 1998 .
[23] George Kingsley Zipf,et al. Human behavior and the principle of least effort , 1949 .
[24] Claude E. Shannon,et al. Programming a computer for playing chess , 1950 .
[25] M. Newman. Power laws, Pareto distributions and Zipf's law , 2005 .
[26] Jorge M. Pacheco,et al. Fractal cartography of urban areas , 2012, Scientific Reports.
[27] J. Fagerberg,et al. The Oxford handbook of innovation , 2006 .
[28] W. Bialek,et al. Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.
[29] V. de Lafuente. Flexible Decisions and Chess Expertise , 2011, Front. Neurosci..
[30] H. Murray. A History of Chess , 1913 .
[31] Eduardo G. Altmann,et al. Stochastic model for the vocabulary growth in natural languages , 2012, ArXiv.
[32] Theo P. van der Weide,et al. A formal derivation of Heaps' Law , 2005, Inf. Sci..
[33] W. Arthur. Inductive Reasoning and Bounded Rationality , 1994 .
[34] Claude E. Shannon,et al. XXII. Programming a Computer for Playing Chess 1 , 1950 .
[35] A. Wagner,et al. The origins of evolutionary innovation , 2010 .
[36] Iddo Eliazar,et al. The growth statistics of Zipfian ensembles: Beyond Heaps’ law , 2011 .
[37] A. S. Bobda. Lexical innovation processes in Cameroon English , 1994 .
[38] Rama Cont,et al. Service de Physique de l’État Condensé, Centre d’études de Saclay , 1997 .
[39] L. Bettencourt,et al. Supplementary Materials for The Origins of Scaling in Cities , 2013 .
[40] H. Simon,et al. ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .