Characterization of Proteins Belonging to the CHAP-Related Superfamily within the Firmicutes

Cell division is a dynamic process ending by separation of the daughter cells. This final step requires the cleavage of the murein septum synthetized during cell division. In Streptococcus thermophilus, cse plays an important role in cell separation. Cse protein contains, at its N-terminal end, a signal peptide and a putative LysM motif suggesting that it is secreted and able to bind to the cell wall. Furthermore, the C-terminus of Cse carries a putative cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain conferring to the protein a potential catalytic activity. To gain insight into the role of Cse in the cell division process, in silico analysis of the Firmicutes proteins displaying CHAP-related domain was undertaken. This work allowed us to distinguish and characterize within the Firmicutes the 2 families of proteins (CHAP and NlpC/p60) belonging to the CHAP superfamily. These 2 families regroup mainly peptidoglycan hydrolases. Data from the literature indicate that NlpC/p60 and CHAP proteins cleave distinct peptidoglycan bonds. Among the enzymes characterized within the Firmicutes, NlpC/p60 proteins are γ-D-glutamate-meso-diaminopimelate muropeptidase. Instead, CHAP enzymes involved in cell separation are N-acetylmuramoyl-L-alanine amidase and CHAP lysins have endopeptidase activity.

[1]  Ernesto García,et al.  Skl, a novel choline‐binding N‐acetylmuramoyl‐l‐alanine amidase of Streptococcus mitis SK137 containing a CHAP domain , 2006, FEBS letters.

[2]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[3]  J. Engler,et al.  The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. , 2004, Microbiology.

[4]  Shiwei Zhu,et al.  PlyC: a multimeric bacteriophage lysin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Pagni,et al.  Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD , 1999 .

[6]  M. Desvaux,et al.  Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. , 2006, FEMS microbiology letters.

[7]  Aldert L. Zomer,et al.  Cell Wall Attachment of a Widely Distributed Peptidoglycan Binding Domain Is Hindered by Cell Wall Constituents* , 2003, Journal of Biological Chemistry.

[8]  Vivek Anantharaman,et al.  Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes , 2003, Genome Biology.

[9]  S. Moineau,et al.  The Cell Lysis Activity of the Streptococcus agalactiae Bacteriophage B30 Endolysin Relies on the Cysteine, Histidine-Dependent Amidohydrolase/Peptidase Domain , 2006, Applied and Environmental Microbiology.

[10]  S. Foster,et al.  Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. , 2003, Microbiology.

[11]  M Bycroft,et al.  The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). , 2000, Journal of molecular biology.

[12]  S. Trachtenberg Mollicutes-wall-less bacteria with internal cytoskeletons. , 1998, Journal of structural biology.

[13]  J. Ghuysen,et al.  Cloning and nucleotide sequence of the gene encoding the gamma-D-glutamyl-L-diamino acid endopeptidase II of Bacillus sphaericus. , 1992, FEMS microbiology letters.

[14]  T. C. Barnett,et al.  Surface proteins of gram-positive bacteria and how they get there. , 2006, Annual review of microbiology.

[15]  W. Goebel,et al.  Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level , 1991, Journal of bacteriology.

[16]  T. Vernet,et al.  The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria , 2005, BMC Genomics.

[17]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[18]  D. Karamata,et al.  The lytE Gene of Bacillus subtilis 168 Encodes a Cell Wall Hydrolase , 1998, Journal of bacteriology.

[19]  John B. Anderson,et al.  CDD: a Conserved Domain Database for protein classification , 2004, Nucleic Acids Res..

[20]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[21]  Alex Bateman,et al.  The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation , 2005, Bioinform..

[22]  R. MATTOS-GRANER,et al.  Functional Analysis of Glucan Binding Protein B from Streptococcus mutans , 2006, Journal of bacteriology.

[23]  B. Eikmanns,et al.  Identification and Molecular Analysis of PcsB, a Protein Required for Cell Wall Separation of Group B Streptococcus , 2001, Journal of bacteriology.

[24]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[25]  S. Foster,et al.  Peptidoglycan hydrolases of Bacillus subtilis 168. , 1996, Microbial drug resistance.

[26]  M. de Pedro,et al.  Involvement of N‐acetylmuramyl‐l‐alanine amidases in cell separation and antibiotic‐induced autolysis of Escherichia coli , 2001, Molecular microbiology.

[27]  K. Kazmierczak,et al.  Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator , 2004, Molecular microbiology.

[28]  M. González,et al.  LytB, a novel pneumococcal murein hydrolase essential for cell separation , 1999, Molecular microbiology.

[29]  M. Sugai,et al.  Cell Wall-targeting Domain of Glycylglycine Endopeptidase Distinguishes among Peptidoglycan Cross-bridges* , 2006, Journal of Biological Chemistry.

[30]  M. Sugai,et al.  An autolysin ring associated with cell separation of Staphylococcus aureus , 1996, Journal of bacteriology.

[31]  W. Goebel,et al.  The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity , 1993, Journal of bacteriology.

[32]  J. García,et al.  The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? , 1997, Microbial drug resistance.

[33]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[34]  U. Sleytr,et al.  S-Layer Proteins , 2000, Journal of bacteriology.

[35]  Alex Bateman,et al.  The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. , 2003, Trends in biochemical sciences.

[36]  S. Ishikawa,et al.  Peptidoglycan Hydrolase LytF Plays a Role in Cell Separation with CwlF during Vegetative Growth of Bacillus subtilis , 1999, Journal of bacteriology.

[37]  F. Borges,et al.  cse, a Chimeric and Variable Gene, Encodes an Extracellular Protein Involved in Cellular Segregation in Streptococcus thermophilus , 2005, Journal of bacteriology.

[38]  S. Ishikawa,et al.  Regulation of a New Cell Wall Hydrolase Gene,cwlF, Which Affects Cell Separation in Bacillus subtilis , 1998, Journal of bacteriology.

[39]  S. Foster,et al.  AcmA of Lactococcus lactis is an N‐acetylglucosaminidase with an optimal number of LysM domains for proper functioning , 2005, The FEBS journal.

[40]  G. Venema,et al.  Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation , 1995, Journal of bacteriology.

[41]  H. Bahl,et al.  Mutagenesis of conserved charged amino acids in SLH domains of Thermoanaerobacterium thermosulfurigenes EM1 affects attachment to cell wall sacculi , 2006, Archives of Microbiology.

[42]  M. Lecerf,et al.  Functional Analysis of AtlA, the Major N-Acetylglucosaminidase of Enterococcus faecalis , 2006, Journal of bacteriology.

[43]  O. Schneewind,et al.  Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. , 1999, The Journal of biological chemistry.

[44]  S. Foster,et al.  Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. , 1991, Journal of general microbiology.

[45]  A M Lesk,et al.  SH3 domains in prokaryotes. , 1999, Trends in biochemical sciences.

[46]  Yoshika Suzawa,et al.  Identification and molecular characterization of an N‐acetylmuramyl‐l‐alanine amidase Sle1 involved in cell separation of Staphylococcus aureus , 2005, Molecular microbiology.

[47]  Beatriz Galán,et al.  Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. , 2003, Structure.

[48]  G. Giménez-Gallego,et al.  A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA , 2001, Nature Structural Biology.

[49]  Michael Y. Galperin,et al.  Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamate-specific amidohydrolases. , 2003, Trends in biochemical sciences.

[50]  F. Borges,et al.  High genetic variability of the Streptococcus thermophiluscse central part, a repeat rich region required for full cell segregation activity , 2006, Antonie van Leeuwenhoek.

[51]  J. García,et al.  Purification and Polar Localization of Pneumococcal LytB, a Putative Endo-β-N-Acetylglucosaminidase: the Chain-Dispersing Murein Hydrolase , 2002, Journal of bacteriology.

[52]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[53]  J. Sekiguchi,et al.  A New d,l-Endopeptidase Gene Product, YojL (Renamed CwlS), Plays a Role in Cell Separation with LytE and LytF in Bacillus subtilis , 2006, Journal of bacteriology.

[54]  H. Rogers,et al.  Microbial cell walls and membranes , 1980 .

[55]  Shogo Nakamura,et al.  The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli. , 2005, Gene.

[56]  M. Rohde,et al.  Simultaneous Deficiency of both MurA and p60 Proteins Generates a Rough Phenotype in Listeria monocytogenes , 2005, Journal of bacteriology.

[57]  E. Díaz,et al.  Carboxy-terminal deletion analysis of the major pneumococcal autolysin , 1994, Journal of bacteriology.

[58]  Takao Suzuki,et al.  Characterization of the Bacillus subtilis ywtD Gene, Whose Product Is Involved in γ-Polyglutamic Acid Degradation , 2003, Journal of bacteriology.

[59]  J. Sekiguchi,et al.  Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. , 2004, Journal of bioscience and bioengineering.

[60]  W. Goebel,et al.  Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells , 1989, Infection and immunity.

[61]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[62]  Š. Janeček,et al.  Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. , 2000, FEMS microbiology letters.