A Review on Property Estimation Methods and Computational Schemes for Rational Solvent Design: A Focus on Pharmaceuticals

This paper provides a review of the available literature on computational schemes for rational solvent design, with a focus on solvent extraction and crystallization (the two most common unit operations) in pharmaceutical industry. The computer-aided design of solvents is important as a cost-effective tool, especially with the regular development of new pharmaceutical molecules. Also, there is a need to minimize the amount and the number of solvents used with regard to environmental, health, and toxicological concerns. This review covers the properties of interest and the predictive methods for estimation of these properties in solvent design including the group contribution based methods, quantitative structure property prediction methods and molecular modeling methods. In addition, the various optimization approaches for rational solvent design such as outer approximation, branch and bound, simulated annealing, and genetic algorithm are also discussed.

[1]  R. Gani,et al.  Computer aided product design: problem formulations, methodology and applications , 1996 .

[2]  Urmila M. Diwekar,et al.  Improved Genetic Algorithms for Deterministic Optimization and Optimization under Uncertainty. Part II. Solvent Selection under Uncertainty , 2005 .

[3]  Urmila M. Diwekar,et al.  Efficient Combinatorial Optimization under Uncertainty. 2. Application to Stochastic Solvent Selection , 2002 .

[4]  Concepción Jiménez-González,et al.  Expanding GSK's solvent selection guide ― embedding sustainability into solvent selection starting at medicinal chemistry , 2011 .

[5]  Aage Fredenslund,et al.  Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients , 1977 .

[6]  Sandro Macchietto,et al.  Computer aided molecular design: a novel method for optimal solvent selection , 1993 .

[7]  A GROUP-INTERACTION CONTRIBUTION APPROACH. A NEW STRATEGY FOR THE ESTIMATION OF PHYSICO-CHEMICAL PROPERTIES OF BRANCHED ISOMERS , 1998 .

[8]  Esteban A. Brignole,et al.  Computer‐aided molecular design of solvents for separation processes , 1994 .

[9]  Lemont B. Kier,et al.  The Meaning of Molecular Connectivity: A Bimolecular Accessibility Model* , 2002 .

[10]  X. H. Li The extended Wiener index , 2002 .

[11]  I. Tsivintzelis,et al.  Modeling the solid–liquid equilibrium in pharmaceutical‐solvent mixtures: Systems with complex hydrogen bonding behavior , 2009 .

[12]  Sten Bay Jørgensen,et al.  A novel framework for simultaneous separation process and product design , 2004 .

[13]  Li-Li Wu,et al.  Extractants Design Based on an Improved Genetic Algorithm , 2007 .

[14]  D. L. Ma,et al.  Optimal control and simulation of multidimensional crystallization processes , 2002 .

[15]  L B Kier,et al.  Issues in representation of molecular structure the development of molecular connectivity. , 2001, Journal of molecular graphics & modelling.

[16]  Urmila M. Diwekar,et al.  Design for environment: a state-of-the-art review , 2011 .

[17]  M. Abraham,et al.  Hydrogen bond descriptors and other properties of ion pairs , 2011 .

[18]  Feng Yang,et al.  Modification of the Wiener index 4 , 2004, J. Comput. Chem..

[19]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[20]  Donald P. Visco,et al.  Computer-aided molecular design using the Signature molecular descriptor: Application to solvent selection , 2010, Comput. Chem. Eng..

[21]  Mahmoud M. El-Halwagi,et al.  Simultaneous process and molecular design—A property based approach , 2007 .

[22]  Izak Nieuwoudt,et al.  Design of Solvents for Extractive Distillation , 2000 .

[23]  Jens Abildskov,et al.  Chemical Product Design: A New Challenge of Applied Thermodynamics , 2004 .

[24]  D. Draper,et al.  Stochastic Optimization: a Review , 2002 .

[25]  S. Birch,et al.  The Preparation of the C10 Monocyclic Aromatic Hydrocarbons , 1949 .

[26]  Michael Hill Product and process design for structured products , 2004 .

[27]  Rafiqul Gani,et al.  Design of Formulated Products: A Systematic Methodology , 2011 .

[28]  Qiang Wang,et al.  Position Group Contribution Method for Estimation of Melting Point of Organic Compounds , 2009 .

[29]  Edward L Cussler,et al.  An Introduction to Chemical Product Design , 2000 .

[30]  Jing Song,et al.  Computer‐Aided Molecular Design of Environmentally Friendly Solvents for Separation Processes , 2008 .

[31]  Rafiqul Gani,et al.  A New Decomposition-Based Computer-Aided Molecular/Mixture Design Methodology for the Design of Optimal Solvents and Solvent Mixtures , 2005 .

[32]  M. I. Trofimov,et al.  Application of the electronegativity indices of organic molecules to tasks of chemical informatics , 2005 .

[33]  L. Achenie,et al.  A theoretical study of solvent effects on Kolbe–Schmitt reaction kinetics , 2006 .

[34]  Prediction of the Enthalpy of Vaporization of Organic Compounds at Their Normal Boiling Point with the Positional Distributive Contribution Method , 2010 .

[35]  Rafiqul Gani,et al.  A computer-aided molecular design framework for crystallization solvent design , 2006 .

[36]  John C. Eslick,et al.  Design of ionic liquids via computational molecular design , 2010, Comput. Chem. Eng..

[37]  Sunil Gupta,et al.  Superaugmented Eccentric Distance Sum Connectivity Indices: Novel Highly Discriminating Topological Descriptors for QSAR/QSPR , 2012, Chemical biology & drug design.

[38]  Alexandru T. Balaban,et al.  Can topological indices transmit information on properties but not on structures? , 2005, J. Comput. Aided Mol. Des..

[39]  R. Gani,et al.  A method for prediction of UNIFAC group interaction parameters , 2007 .

[40]  Vilma Edite Fonseca Heinzen,et al.  Estimating the Octanol/Water Partition Coefficient for Aliphatic Organic Compounds Using Semi-Empirical Electrotopological Index , 2011, International journal of molecular sciences.

[41]  Venkat Venkatasubramanian,et al.  Computer-aided molecular design using genetic algorithms , 1994 .

[42]  H. Sharghi,et al.  Highly correlating distance-connectivity-based topological indices. 4: Stepwise factor selection-based PCR models for QSPR study of 14 properties of monoalkenes , 2007 .

[43]  Mario R. Eden,et al.  Combined property clustering and GC+ techniques for process and product design , 2010, Comput. Chem. Eng..

[44]  Luke E. K. Achenie,et al.  Tuning the Morphology of Pharmaceutical Compounds via Model Based Solvent Selection , 2008 .

[45]  Claire S. Adjiman,et al.  Pure component properties from group contribution: Hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant , 2005 .

[46]  Nikolaos V. Sahinidis,et al.  Design of alternative refrigerants via global optimization , 2003 .

[47]  Luke E. K. Achenie,et al.  Computer aided solvent design for extractive fermentation , 2002 .

[48]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[49]  Krist V. Gernaey,et al.  A model-based systems approach to pharmaceutical product-process design and analysis , 2010 .

[50]  Mahmoud M. El-Halwagi,et al.  Computer-aided synthesis of polymers and blends with target properties , 1996 .

[51]  F. Torrens Valence topological charge-transfer indices for dipole moments , 2003 .

[52]  Leonidas Constantinou,et al.  A Group-Contribution Method for Predicting Pure Component Properties of Biochemical and Safety Interest , 2004 .

[53]  Kyle V. Camarda,et al.  Optimization in polymer design using connectivity indices , 1999 .

[54]  Emmanuel Stefanis,et al.  Prediction of Hansen Solubility Parameters with a New Group-Contribution Method , 2008 .

[55]  Biye Ren,et al.  Application of novel atom-type AI topological indices in the structure-property correlations , 2002 .

[56]  Gürkan Sin,et al.  Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis , 2012, J. Chem. Inf. Model..

[57]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[58]  Luke E. K. Achenie,et al.  Solvent design for crystallization of carboxylic acids , 2009, Comput. Chem. Eng..

[59]  Jie Chen,et al.  Computer-Aided Solvent Selection for Improving the Morphology of Needle-like Crystals: A Case Study of 2,6-Dihydroxybenzoic Acid , 2010 .

[60]  Jean-Claude Charpentier,et al.  The triplet "molecular processes-product-process" engineering: the future of chemical engineering ? , 2002 .

[61]  Beverly V. Smith,et al.  Integrative chemical product design strategies: Reflecting industry trends and challenges , 2010, Comput. Chem. Eng..

[62]  A.-H. Meniai,et al.  The selection of solvents for liquid-liquid extraction , 1992 .

[63]  Mario R. Eden,et al.  Simultaneous solution of process and molecular design problems using an algebraic approach , 2010, Comput. Chem. Eng..

[64]  Rafiqul Gani,et al.  Combined Group-Contribution and Atom Connectivity Index-Based Methods for Estimation of Surface Tension and Viscosity , 2008 .

[65]  Costas D. Maranas,et al.  Molecular Design Using Quantum Chemical Calculations for Property Estimation , 2004 .

[66]  Jorge A. Marrero,et al.  Group-Contribution-Based Estimation of Octanol/Water Partition Coefficient and Aqueous Solubility , 2002 .

[67]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[68]  R. Davey,et al.  Crystallization of a salt of a weak organic acid and base: solubility relations, supersaturation control and polymorphic behavior. , 2005, The journal of physical chemistry. B.

[69]  Rafiqul Gani,et al.  Design and Synthesis of Distillation Systems using a Driving Force Based Approach , 2004 .

[70]  Rafiqul Gani,et al.  Blanket Wash Solvent Blend Design Using Interval Analysis , 2003 .

[71]  J. O’Connell,et al.  Predicting the Solubilities of Complex Chemicals I. Solutes in Different Solvents , 2003 .

[72]  Feng Yang,et al.  Novel topological index F based on incidence matrix , 2003, J. Comput. Chem..

[73]  A. Klamt,et al.  Solubility of sodium diclofenac in different solvents , 2007 .

[74]  Linear models for prediction of ibuprofen crystal morphology based on hydrogen bonding propensities , 2009 .

[75]  Rafiqul Gani,et al.  Thermodynamic Property Modeling for Chemical Process and Product Engineering: Some Perspectives , 2009 .

[76]  Mario R. Eden,et al.  Reverse problem formulation approach to molecular design using property operators based on signature descriptors , 2010, Comput. Chem. Eng..

[77]  H. Tung,et al.  Prediction of pharmaceutical solubility Via NRTL-SAC and COSMO-SAC. , 2008, Journal of pharmaceutical sciences.

[78]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[79]  Kwok Chow,et al.  Engineering of pharmaceutical materials: an industrial perspective. , 2008, Journal of pharmaceutical sciences.

[80]  Manish Sinha,et al.  A reduced dimension branch-and-bound algorithm for molecular design , 2003, Comput. Chem. Eng..

[81]  E. A. Brignole,et al.  Molecular design of solvents : An efficient search algorithm for branched molecules , 2004 .

[82]  Andrzej Parczewski,et al.  Organic solvents in the pharmaceutical industry. , 2010, Acta poloniae pharmaceutica.

[83]  Gabriele Sadowski,et al.  Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. , 2009, Journal of pharmaceutical sciences.

[84]  Kyle V. Camarda,et al.  Pharmaceutical product design using combinatorial optimization , 2004, Comput. Chem. Eng..

[85]  Dejan Plavsic,et al.  Modeling the Octanol-Water Partition Coefficients by an Optimized Molecular Connectivity Index , 2005, J. Chem. Inf. Model..

[86]  Antonis C. Kokossis,et al.  On the development of novel chemicals using a systematic optimisation approach. Part II. Solvent design , 2000 .

[87]  Rafiqul Gani,et al.  Method for selection of solvents for promotion of organic reactions , 2005, Comput. Chem. Eng..

[88]  Patrick Linke,et al.  Efficient integration of optimal solvent and process design using molecular clustering , 2006 .

[89]  Svetoslav H. Slavov,et al.  Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. , 2010, Chemical reviews.

[90]  H. Wiener Correlation of Heats of Isomerization, and Differences in Heats of Vaporization of Isomers, Among the Paraffin Hydrocarbons , 1947 .

[91]  Rafiqul Gani,et al.  Analysis and application of GCPlus models for property prediction of organic chemical systems , 2011 .

[92]  Qiang Wang,et al.  Position Group Contribution Method for Predicting the Normal Boiling Point of Organic Compounds , 2009 .

[93]  T M Martin,et al.  Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method. , 2001, Chemical research in toxicology.

[94]  USING THE GROUP-INTERACTION CONTRIBUTION APPROACH (GIC) IN MIXTURES 1. Prediction of Azeotropic Parameters , 1998 .

[95]  Rafiqul Gani,et al.  Computer aided polymer design using multi-scale modelling , 2010 .

[96]  Urmila M. Diwekar,et al.  Multi-objective integrated solvent selection and solvent recycling under uncertainty using a new genetic algorithm , 2007 .

[97]  K. Raghavan,et al.  Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening. , 2004, International journal of pharmaceutics.

[98]  Honglai Liu,et al.  Volumetric Connectivity Index: A New Approach for Estimation of Density of Ionic Liquids , 2011 .

[99]  Yang Wang,et al.  A Novel Lu Index to QSPR Studies of Aldehydes and Ketones , 2006 .

[100]  Rafiqul Gani,et al.  Computer-aided molecular design with combined molecular modeling and group contribution , 1999 .

[101]  Suhani J. Patel,et al.  QSPR Flash Point Prediction of Solvents Using Topological Indices for Application in Computer Aided Molecular Design , 2009 .

[102]  Michael F. Doherty,et al.  Modeling crystal shapes of organic materials grown from solution , 2000 .

[103]  David C. Miller,et al.  Computer-aided molecular design using Tabu search , 2005, Comput. Chem. Eng..

[104]  Rafiqul Gani,et al.  A multi-step and multi-level approach for computer aided molecular design , 2000 .

[105]  Feng-Sheng Wang,et al.  Computer-aided biocompatible solvent design for an integrated extractive fermentation–separation process , 2010 .

[106]  Sohrab Rohani,et al.  An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. , 2005, Journal of pharmaceutical sciences.

[107]  Gürkan Sin,et al.  Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis , 2012 .

[108]  Rafiqul Gani,et al.  Model-Based Calculation of Solid Solubility for Solvent Selection—A Review , 2008 .

[109]  Nikolaos V. Sahinidis,et al.  Optimization techniques in molecular structure and function elucidation , 2009, Comput. Chem. Eng..

[110]  Gilles Klopman,et al.  A Structural Analogue Approach to the Prediction of the Octanol-Water Partition Coefficient , 2006, J. Chem. Inf. Model..

[111]  Rafiqul Gani,et al.  Computer-Aided Methods and Tools for Chemical Product Design , 2004 .

[112]  Petr Kolář,et al.  Solvent selection for pharmaceuticals , 2002 .

[113]  Francisco Torrens,et al.  Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules , 2010, Molecular Diversity.

[114]  José O. Valderrama,et al.  Mass connectivity index, a new molecular parameter for the estimation of ionic liquid properties , 2010 .

[115]  Jiding Li,et al.  A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties , 1993 .

[116]  Daniel R Nicponski,et al.  The role of solvent selection at exploratory and production stages in the pharmaceutical industry. , 2011, Future medicinal chemistry.

[117]  Patrick Linke,et al.  Integrated solvent and process selection for separation and reactive separation systems , 2009 .

[118]  Rafiqul Gani,et al.  An experimental verification of morphology of ibuprofen crystals from CAMD designed solvent , 2007 .

[119]  R. Gani,et al.  Automatic Creation of Missing Groups through Connectivity Index for Pure-Component Property Prediction , 2005 .

[120]  István Lukovits,et al.  On relationships between vertex-degrees, path-numbers and graph valence-shells in trees , 2002 .

[121]  J. Gmehling,et al.  Measurement and prediction of solubilities of active pharmaceutical ingredients. , 2010, International journal of pharmaceutics.

[122]  Vilma Edite Fonseca Heinzen,et al.  Semi-empirical topological index: a tool for QSPR/QSAR studies , 2005, Journal of molecular modeling.

[123]  V. Barwick Strategies for solvent selection : a literature review , 1997 .

[124]  Luke E. K. Achenie,et al.  A hybrid global optimization approach for solvent design , 2002 .

[125]  Manish Sinha,et al.  Environmentally benign solvent design by global optimization , 1999 .

[126]  Efstratios N. Pistikopoulos,et al.  Computer-Aided Solvent Design for Reactions: Maximizing Product Formation , 2008 .

[127]  E. Stenby,et al.  Application of Group Contribution Models to the Calculation of the Octanol−Water Partition Coefficient , 2001 .

[128]  Ekaterina I Izgorodina,et al.  Towards large-scale, fully ab initio calculations of ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.