Finite Self-Information
暂无分享,去创建一个
[1] Gregory J. Chaitin. Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..
[2] Noam Greenberg,et al. Inherent enumerability of strong jump-traceability , 2011, 1110.1435.
[3] Wolfgang Merkle,et al. Time-Bounded Kolmogorov Complexity and Solovay Functions , 2009, Theory of Computing Systems.
[4] Leonid A. Levin,et al. Randomness Conservation Inequalities; Information and Independence in Mathematical Theories , 1984, Inf. Control..
[5] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[6] Leonid A. Levin. Forbidden information , 2013, JACM.
[7] Peter A. Cholak,et al. STRONG JUMP-TRACEABILITY I : THE COMPUTABLY ENUMERABLE CASE , 2008 .
[8] Paul M. B. Vitányi,et al. An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.
[9] Rodney G. Downey,et al. $K$-trivial degrees and the jump-traceability hierarchy , 2009 .
[10] André Nies,et al. Reals which Compute Little , 2002 .
[11] A. Nies. Lowness properties and randomness , 2005 .
[12] A. Nies. Computability and randomness , 2009 .
[13] R. Soare. Recursively enumerable sets and degrees , 1987 .
[14] André Nies,et al. Lowness properties and approximations of the jump , 2008, Ann. Pure Appl. Log..
[15] Jack H. Lutz,et al. The dimensions of individual strings and sequences , 2002, Inf. Comput..
[16] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[17] Jack H. Lutz,et al. Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.
[18] Rebecca Weber,et al. Lowness for effective Hausdorff dimension , 2014, J. Math. Log..