Propagation of higher order Bessel–Gaussian beams in turbulence

The propagation characteristics of higher order Bessel–Gaussian beams travelling in turbulent atmosphere are investigated. Using extended Huygens–Fresnel principle, I formulated receiver plane intensity and solved it down to a double integral stage. Source beam plots are made illustrating the variation of intensity against order and width parameter. From the examination of receiver intensity graphs, it is seen that Bessel–Gaussian beam are converted into modified Bessel–Gaussian beams at intermediate propagation ranges eventually ending up as Gaussian profiles. The impacts of order and turbulence levels on beam profile are analysed. Focusing effects and beam size change along the propagation axis are studied.

[1]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[2]  Phase-conjugating resonator for Bessel-Gauss beams , 2006 .

[3]  A. Belafhal,et al.  Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system , 2000 .

[4]  W. H. Carter,et al.  Spot size and divergence for Hermite Gaussian beams of any order. , 1980, Applied optics.

[5]  Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Yahya Baykal,et al.  Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence , 2006 .

[7]  Herman,et al.  Bessel-like beams modulated by arbitrary radial functions , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Daomu Zhao,et al.  Propagation characteristics of linearly polarized Bessel-Gaussian beams through an annular apertured paraxial ABCD optical system , 2004 .

[9]  A. A. Tovar Propagation of Laguerre-Bessel-Gaussian beams. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  D. P. Caetano,et al.  Hermite-Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. , 2006, Optics express.

[11]  Egon Ullrich,et al.  Dr. Wolfgang Gröbner (Prof. a. d. Universität Innsbruck) und Dr. Nikolaus Hofreiter (Prof. a. d. Universität Wien). Integraltafel. Zweiter Teil. Bestimmte Integrale. VI + 204S Springer‐Verlag, Wien und Innsbruck 1950. Preis 24,— DM , 1952 .

[12]  He Chen,et al.  Propagation of high-order Bessel–Gaussian beam through a misaligned first-order optical system , 2007 .

[13]  F. Gori,et al.  Axial intensity of apertured Bessel beams , 1997 .

[14]  Propagation properties of partially coherent modified Bessel-Gauss beams , 2005 .

[15]  Daomu Zhao,et al.  Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture , 2005 .

[16]  M. Santarsiero,et al.  M(2) factor of Bessel Gauss beams. , 1997, Optics letters.

[17]  E Marom,et al.  Propagation of anisotropic Bessel-Gaussian beams: sidelobe control, mode selection, and field depth. , 2001, Applied optics.

[18]  Sedukhin Marginal phase correction of truncated Bessel beams , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams , 2002 .

[20]  Partially coherent nonparaxial modified Bessel–Gauss beams , 2006 .