Enhancement of magnetic moment in ZnxFe3−xO4 thin films with dilute Zn substitution

Highly (111)-textured ZnxFe3−xO4 thin films were grown by pulsed laser deposition on silicon substrates. The spin and orbital magnetic moments of the ZnxFe3−xO4 thin films have been obtained by X-ray magnetic circular dichroism (XMCD) and sum rule analysis. The total magnetic moments thus extracted are in good agreement with the values obtained by vibrating sample magnetometer. Both the unquenched orbital moment and the ratio of orbital-to-spin moment first increase significantly with increasing Zn substitution at a low concentration range ( 0≤x≤0.1), and then decrease at a higher concentration (x = 0.3). The underlying site-specific doping mechanisms involved here have been elucidated by detailed analysis of the XMCD of ZnxFe3−xO4 films. Our work demonstrates a practical means to manipulate the spin-orbit coupling in the ZnxFe3−xO4 thin films via Zn impurity doping.

[1]  Xin Liu,et al.  Structural, Magnetic, and Thermodynamic Evolutions of Zn-Doped Fe3O4 Nanoparticles Synthesized Using a One-Step Solvothermal Method , 2016 .

[2]  Masakazu Aono,et al.  In Situ Tuning of Magnetization and Magnetoresistance in Fe3O4 Thin Film Achieved with All-Solid-State Redox Device. , 2016, ACS nano.

[3]  P. Schiffer,et al.  Magnetically disordered phase in epitaxial iron-deficient F e3 O4 thin films , 2015 .

[4]  Wei Zhang,et al.  Spin Hall effects in metallic antiferromagnets. , 2014, Physical review letters.

[5]  B. You,et al.  The influence of Nd dopants on spin and orbital moments in Nd-doped permalloy thin films , 2014 .

[6]  J. Wu,et al.  Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100) , 2014, 1503.07902.

[7]  Y. Murakami,et al.  Fabrication of three-dimensional epitaxial (Fe,Zn)3O4 nanowall wire structures and their transport properties , 2014 .

[8]  J. Moussy From epitaxial growth of ferrite thin films to spin-polarized tunnelling , 2013 .

[9]  Yongbing Xu,et al.  Electronic and magnetic structure of C60/Fe3O4(001): a hybrid interface for organic spintronics , 2013 .

[10]  M. Matsuo,et al.  Magnetic Behavior of Zn-Doped Fe3O4 Nanoparticles Estimated in Terms of Crystal Domain Size , 2012 .

[11]  W. Wang,et al.  Tunable electrical and magnetic properties of half-metallic Zn(x)Fe(3-x)O4 from first principles. , 2011, Physical chemistry chemical physics : PCCP.

[12]  F. Golmar,et al.  Evidence of defect-induced ferromagnetism in ZnFe2O4thin films , 2011, 1106.3128.

[13]  Hidekazu Tanaka,et al.  Enhancement of spin polarization in a transition metal oxide ferromagnetic nanodot diode. , 2011, Nano letters (Print).

[14]  E. Negusse,et al.  Controlling the electronic structure of Co 1 − x Fe 2 + x O 4 thin films through iron doping , 2011 .

[15]  O. Mryasov,et al.  Tunneling interlayer exchange coupling between oxide ferrimagnets: Analysis for Fe3O4/vac/Fe3O4 case , 2009 .

[16]  R. Gross,et al.  Epitaxial Zn x Fe 3-x O 4 thin films: A spintronic material with tunable electrical and magnetic properties , 2008, 0808.3642.

[17]  T. Ishikawa,et al.  Electronic structures of Fe 3 − x M x O 4 ( M = Mn , Zn ) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism , 2007 .

[18]  T. Perring,et al.  Zener double exchange from local valence fluctuations in magnetite. , 2007, Physical review letters.

[19]  T. Ishikawa,et al.  Fe3−xZnxO4 thin film as tunable high Curie temperature ferromagnetic semiconductor , 2006 .

[20]  P. E. Mijnarends,et al.  Spin moment over 10-300 K and delocalization of magnetic electrons above the Verwey transition in magnetite , 2006, cond-mat/0703305.

[21]  E. Goering,et al.  Vanishing Fe 3d orbital moments in single-crystalline magnetite , 2005, cond-mat/0508775.

[22]  J. Chapman,et al.  Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films , 1997 .

[23]  Chen,et al.  Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. , 1995, Physical review letters.

[24]  C. Kittel,et al.  Antiferromagnetic Arrangements in Ferrites , 1952 .