Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent.

[1]  Michael J. Burns,et al.  Efficient nanocoax‐based solar cells , 2010 .

[2]  C. Grant Willson,et al.  Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication , 2009 .

[3]  M. Naughton,et al.  Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays , 2011 .

[4]  Mukul Agrawal,et al.  High performance solar-selective absorbers using coated sub-wavelength gratings. , 2010, Optics express.

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[7]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[8]  Ian F. C. Smith,et al.  A direct stochastic algorithm for global search , 2003, Appl. Math. Comput..

[9]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[10]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[11]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[12]  Kim Y. Lee,et al.  Step and flash imprint lithography for manufacturing patterned media , 2009 .

[13]  J. Rogers,et al.  Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement. , 2010, Nano letters (Print).

[14]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[15]  L. Xu,et al.  Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells. , 2011, Optics express.

[16]  C. Ballif,et al.  N/I buffer layer for substrate microcrystalline thin film silicon solar cell , 2008 .

[17]  Nicola Romeo,et al.  Recent progress on CdTe/CdS thin film solar cells , 2004 .

[18]  J. M. Stewart,et al.  Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe/sub 2/ solar cells , 1990 .

[19]  Ying Zhang,et al.  High performance wire‐array silicon solar cells , 2011 .

[20]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[21]  Naoya Hayashi,et al.  Full field imprint masks using variable shape beam pattern generators , 2008 .

[22]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[23]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[24]  S. V. Sreenivasan,et al.  Nanoscale Manufacturing Enabled by Imprint Lithography , 2008 .

[25]  Theodor Tamir,et al.  Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  E. Yablonovitch Statistical ray optics , 1982 .

[27]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[28]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[29]  E. Yablonovitch,et al.  Maximum statistical increase of optical absorption in textured semiconductor films. , 1983, Optics letters.

[30]  Michael J. Naughton,et al.  Subwavelength waveguide for visible light , 2007 .

[31]  D. Redfield,et al.  Multiple‐pass thin‐film silicon solar cell , 1974 .

[32]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[33]  C. Battaglia,et al.  High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications , 2011 .

[34]  Christophe Ballif,et al.  UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells , 2011 .

[35]  W. Tu,et al.  Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array , 2010 .

[36]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of metallic surface-relief gratings , 1986 .

[37]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .