Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties

Abstract Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit superconducting behavior. Potassium-doped C60NWs have realized the highest superconducting volume fraction of the alkali metal-doped C60 crystals and display a high critical current density (Jc) under a high magnetic field of 50 kOe. The growth control of FNWs is important for their success in practical applications. This paper reviews recent FNWs research focusing on their mechanical, electrical and superconducting properties and growth mechanisms in the liquid–liquid interfacial precipitation method.

[1]  M. Naito,et al.  High-temperature calcined fullerene nanowhiskers as well as long needle-like multi-wall carbon nanotubes have abilities to induce NLRP3-mediated IL-1β secretion. , 2014, Biochemical and biophysical research communications.

[2]  K. Tanabe,et al.  Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides , 2015, Science and technology of advanced materials.

[3]  M. Amer,et al.  Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers , 2011 .

[4]  D. Bradley,et al.  Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. , 2012, Journal of the American Chemical Society.

[5]  T. Suga,et al.  Morphology of C60 nanotubes fabricated by the liquid–liquid interfacial precipitation method , 2005 .

[6]  Y. Koike,et al.  Superconductivity in graphite-alkali metal intercalation compounds , 1980 .

[7]  L. Wan,et al.  Controllable Preparation of Submicrometer Single-Crystal C60 Rods and Tubes Trough Concentration Depletion at the Surfaces of Seeds , 2007 .

[8]  K. Miyazawa,et al.  Platinum chloride deposition into C60 nanotubes , 2008 .

[9]  S. Lucyszyn,et al.  DC Characterisation of C60 Whiskers and Nanowhiskers , 2007, ECS Transactions.

[10]  K. Miyazawa,et al.  The effect of solvent ratio and water on the growth of C60 nanowhiskers , 2010 .

[11]  K. Miyazawa,et al.  Influence of the solution volume on the growth of C60 nanowhiskers , 2014 .

[12]  T. Nishimura,et al.  High-resolution transmission electron microscopy of heat-treated C60 nanotubes , 2009 .

[13]  Superconductivity in diamond thin films well above liquid helium temperature , 2004, cond-mat/0406053.

[14]  V. Mordkovich,et al.  Synthesis of ultrahard fullerite with a catalytic 3D polymerization reaction of C60 , 2014 .

[15]  Jian Zhao,et al.  Reduced working electrode based on fullerene C60 nanotubes@DNA: Characterization and application , 2010 .

[16]  T. Suga,et al.  Transmission electron microscopy investigation of fullerene nanowhiskers and needle-like precipitates formed by using C_60 and (η^2-C_60)Pt(PPh_3)_2 , 2004 .

[17]  K. Miyazawa,et al.  Fracture surface and correlation of buckling force with aspect ratio of C60 crystalline whiskers , 2007 .

[18]  K. Miyazawa,et al.  Bending Process and Young's Modulus of Fullerene C60 Nanowhiskers , 2009 .

[19]  T. Suga,et al.  Structural characterization of room-temperature synthesized fullerene nanowhiskers , 2006 .

[20]  Katsuhiko Ariga,et al.  Fullerene Nanoarchitectonics: From Zero to Higher Dimensions , 2013 .

[21]  Katsuhiko Ariga,et al.  Alcohol-induced decomposition of Olmstead's crystalline Ag(I)-fullerene heteronanostructure yields 'bucky cubes'† , 2013 .

[22]  K. Miyazawa,et al.  Synthesis of C70 two-dimensional nanosheets by liquid–liquid interfacial precipitation method , 2014 .

[23]  Siddharth S. Saxena,et al.  Superconductivity in the intercalated graphite compounds C6Yb and C6Ca , 2005, cond-mat/0503570.

[24]  B. Cho Preparation of Fullerene (C60) Nanowhisker-ZnO Nanocomposites by Heat Treatment and Photocatalytic Degradation of Methylene Blue , 2013 .

[25]  S. Okada,et al.  New Metallic Crystalline Carbon: Three Dimensionally Polymerized C60 Fullerite , 1999 .

[26]  K. Miyazawa,et al.  The effect of water on the stability of C60 fullerene nanowhiskers , 2010 .

[27]  K. Miyazawa,et al.  Growth and FIB-SEM analyses of C60 microtubes vertically synthesized on porous alumina membranes , 2014 .

[28]  R. Fleming,et al.  New Phases of C60 Synthesized at High Pressure , 1994, Science.

[29]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[30]  K. Kojima,et al.  Photo-assisted growth and polymerization of C60 ‘nano’whiskers , 2003 .

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  T. Wågberg,et al.  Solution‐Based Phototransformation of C60 Nanorods: Towards Improved Electronic Devices , 2013 .

[33]  K. Miyazawa,et al.  Buckling of C60 whiskers , 2006 .

[34]  Y. Tateyama,et al.  Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. , 2009, Journal of the American Chemical Society.

[35]  Katsuhiko Ariga,et al.  Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[36]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[37]  K. Miyazawa,et al.  Young's modulus of crystalline C60 nanotubes studied by in situ transmission electron microscopy , 2008 .

[38]  K. Miyazawa,et al.  Raman Laser Polymerization of C60 Nanowhiskers , 2012 .

[39]  S. Zhang,et al.  Study of electrochemical properties of pyrrolidinofullerenes by microelectrode voltammetry , 2002 .

[40]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[41]  H. Shin,et al.  Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid. , 2010, Chemical communications.

[42]  T. Suga,et al.  Structural investigation of the C_60/C_70 whiskers fabricated by forming liquid–liquid interfaces of toluene with dissolved C_60/C_70 and isopropyl alcohol , 2003 .

[43]  Y. Saito,et al.  Study on structure of heat‐treated fullerene nanowhiskers and their field electron emission characteristics , 2012 .

[44]  T. Suga,et al.  Characterizing high-pressure compressed C_60 whiskers and C_60 powder , 2003 .

[45]  V. Sidorov,et al.  Superconductivity in diamond , 2004, Nature.

[46]  D. Fujita,et al.  Covered conduction of individual C60 nanowhiskers , 2008, Nanotechnology.

[47]  T. Suga,et al.  Structural investigation of heat-treated fullerene nanotubes and nanowhiskers , 2006 .

[48]  Katsuhiko Ariga,et al.  Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. , 2013, Journal of the American Chemical Society.

[49]  T. Wågberg,et al.  On the fabrication of crystalline C60 nanorod transistors from solution , 2012, Nanotechnology.

[50]  P. Larssona,et al.  DC Characterisation of C60 Whiskers and Nanowhiskers , 2006 .

[51]  T. Ebbesen,et al.  Superconductivity at 33 K in CsxRbyC60 , 1991, Nature.

[52]  Y. Saito,et al.  Structures and field emission properties of heat-treated C60 fullerene nanowhiskers , 2012 .

[53]  J. Bird,et al.  Electron Transport Properties in Photo and Supersonic Wave Irradiated C60 Fullerene Nano-Whisker Field-Effect Transistors , 2010 .

[54]  Tadatomo Suga,et al.  Structure and properties of fullerene nanowhiskers prepared by the liquid-liquid interfacial precipitation method , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[55]  Kizuka Tokushi,et al.  Buckling of C 60 whiskers 著者 , 2006 .

[56]  R. Fleming,et al.  Superconductivity in alkali metal fullerides , 1991 .

[57]  K. Miyazawa,et al.  Cross-sectional structural analysis of C60 nanowhiskers by transmission electron microscopy , 2011 .

[58]  D. Fujita,et al.  Preparation of endohedral metallofullerene nanowhiskers and nanosheets , 2010 .

[59]  K. Miyazawa Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes. , 2009, Journal of nanoscience and nanotechnology.

[60]  Junfu Liu,et al.  Thermal, sonochemical, and mechanical behaviors of single crystal [60]fullerene nanotubes , 2007, Microscopy research and technique.

[61]  Lei Jiang,et al.  Imaging as-grown [60]fullerene nanotubes by template technique. , 2002, Journal of the American Chemical Society.

[62]  K. Miyazawa,et al.  Structural characterization of C60 nanowhiskers formed by the liquid/liquid interfacial precipitation method , 2003 .

[63]  T. Suga,et al.  Structural characterization of the C_60[C(COOC_2H_5)_2] whiskers prepared by the liquid–liquid interfacial precipitation method , 2003 .

[64]  L. Wan,et al.  Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod , 2008 .

[65]  Bingbing Liu,et al.  Synthesis of alkali-metal-doped C60 nanotubes , 2011 .

[66]  M. Kuwabara,et al.  C60 Nanowhiskers in a Mixture of Lead Zirconate Titanate Sol–C60 Toluene Solution , 2001 .

[67]  K. Miyazawa,et al.  Solvated structure of C60 nanowhiskers , 2005 .

[68]  O. Ito,et al.  Diameter controlled growth of fullerene nanowhiskers and their optical properties , 2011 .

[69]  T. Suga,et al.  Characterization of high-pressure sintered C_60 nanowhiskers and C_60 powder , 2005 .

[70]  K. Miyazawa,et al.  Solvation-Assisted Young’s Modulus Control of Single-Crystal Fullerene C Nanowhiskers , 2012 .

[71]  M. Umeno,et al.  Toward organic thick film solar cells: Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods , 2007 .

[72]  K. Miyazawa,et al.  Preparation and superconductivity of potassium-doped fullerene nanowhiskers , 2013 .

[73]  Microstructural analysis of high-pressure compressed C 60 , 2001 .

[74]  K. Miyazawa,et al.  Young ’ s Modulus of Single-Crystal Fullerene C 70 Nanotubes , 2014 .

[75]  M. Sathish,et al.  Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. , 2007, Journal of the American Chemical Society.

[76]  R. Haddon Electronic structure, conductivity and superconductivity of alkali metal doped C60 , 1993 .

[77]  K. Miyazawa,et al.  GROWTH RATE MEASUREMENT OF C60 FULLERENE NANOWHISKERS , 2008 .

[78]  T. Suga,et al.  Structural characterization of the fullerene nanotubes prepared by the liquid–liquid interfacial precipitation method , 2005 .

[79]  V. N. Reshetov,et al.  Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear , 1998 .

[80]  Robert C. Haddon,et al.  Electronic structure, conductivity and superconductivity of alkali metal doped (C60) , 1992 .

[81]  K. Miyazawa,et al.  Young's Modulus of Single-Crystal Fullerene C Nanotubes , 2012 .

[82]  J. Bird,et al.  Electrical properties of field-effect transistors based on C60 nanowhiskers , 2006 .

[83]  Ying Wang,et al.  Photoinduced Polymerization of Solid C60 Films , 1993, Science.

[84]  M. Aono,et al.  Fabrication and electron-beam-induced polymerization of C60 nanoribbon , 2004 .

[85]  K. Ariga,et al.  Mixing antisolvents induced modulation in the morphology of crystalline C60. , 2012, Journal of nanoscience and nanotechnology.

[86]  K. Miyazawa,et al.  Fabrication of solution grown C60 fullerene nanotubes with tunable diameter. , 2009, Journal of nanoscience and nanotechnology.

[87]  K. Andres,et al.  Superconductivity in Graphitic Compounds , 1965 .

[88]  K. Kojima,et al.  Photo-assisted growth of C 60 nanowhiskers from solution , 2005 .

[89]  Katsuhiko Ariga,et al.  Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties. , 2014, ACS applied materials & interfaces.

[90]  Jedeok Kim,et al.  Vertically Well-Aligned C60 Microtube Crystal Array Prepared Using a Solution-Based, One-Step Process , 2008 .

[91]  Zhenan Bao,et al.  High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. , 2012, Journal of the American Chemical Society.