Fast alignment using rotation vector and adaptive Kalman filter

A fast and convenient alignment method is proposed. To improve the speed of convergence, we used rotation vectors instead of traditional Euler angles. Furthermore, we developed an algorithm to automatically tune the measurement noise covariance matrix using adaptive Kalman filtering. Finally, the developed algorithms were applied to an aerial imaging system to automatically geo-locate the centers of the images.

[1]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[2]  J. Bortz A New Mathematical Formulation for Strapdown Inertial Navigation , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Cornelius T. Leondes,et al.  In-Flight Alignment and Calibration of Inertial Measurement Units - Part II: Experimental Results , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Cornelius T. Leondes,et al.  In-Flight Alignment and Calibration of Inertial Measurement Units - Part I: General Formulation , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[5]  M. S. Grewal,et al.  Application of Kalman filtering to the calibration and alignment of inertial navigation systems , 1991 .

[6]  Yeon Fuh Jiang,et al.  On the rotation vector differential equation , 1991 .

[7]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[8]  Anthony Lawrence,et al.  Modern Inertial Technology , 1993 .

[9]  M. Shuster The kinematic equation for the rotation vector , 1993 .

[10]  Joaquín Aranda,et al.  REDUCED-ORDER KALMAN FILTER FOR ALIGNMENT , 1994 .

[11]  M. B. Ignagni,et al.  On the orientation vector differential equation in strapdown inertial systems , 1994 .

[12]  Jiang Cheng Fang,et al.  A fast initial alignment method for strapdown inertial navigation system on stationary base , 1996 .

[13]  Robert M. Rogers IMU IN-MOTION ALIGNMENT WITHOUT BENEFIT OF ATTITUDE INITIALIZATION , 1997 .

[14]  Weak observability and observers for linear neutral delay-differential systems , 1997, 1997 European Control Conference (ECC).

[15]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[16]  Peter S. Maybeck,et al.  Reducing lag in virtual displays using multiple model adaptive estimation , 1998 .

[17]  Peter S. Maybeck,et al.  Interrelationship of single-filter and multiple-model adaptive algorithms , 1998 .

[18]  R. M. Rogers Low dynamic IMU alignment , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[19]  Jerzy Z. Sasiadek,et al.  Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Hugh Durrant-Whyte,et al.  Initial calibration and alignment of low‐cost inertial navigation units for land vehicle applications , 1999 .

[21]  Ali M. Reza,et al.  FPGA implementation of adaptive temporal Kalman filter for real time video filtering , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[22]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[23]  Liwen Dai,et al.  Dual-Frequency GPS/GLONASS Real-Time Ambiguity Resolution for Medium-Range Kinematic Positioning , 2000 .

[24]  Patrice Wira,et al.  A new adaptive Kalman filter applied to visual servoing tasks , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[25]  Robert M. Rogers,et al.  Applied Mathematics in Integrated Navigation Systems , 2000 .

[26]  Chris Rizos,et al.  GPS and GLONASS Integration: Modeling and Ambiguity Resolution Issues , 2001, GPS Solutions.

[27]  Patrice Wira,et al.  A divide-and-conquer learning architecture for predicting unknown motion , 2001, ESANN.