Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2

The band structures and densities of states for a number of non-transition-metal compounds with the rutile structure are calculated using a tight-binding method with scaled two-centre interactions. For SnO2, the valence band maximum state is calculated to have Gamma 3+ symmetry in agreement with experimental results, and the calculated valence-band density of states is in fair agreement with photoemission. The simplicity of the LCAO approach is utilised to give algebraic expressions for the energy and nature of each band and used to discuss bonding and ionicity. The importance of the long-pair oxygen orbitals in forming the upper valence bands of SnO2 is stressed. TeO2 is discussed as an example of a class of compounds in which the two cation s electrons remain bound, giving rise to a cationic gap. The calculated joint density of states can be used to account for the experimentally observed optical dispersion.

[1]  J. Robertson Electronic structure of SnS2, SnSe2, CdI2 and PbI2 , 1979 .

[2]  V. Heine,et al.  The infrared effective charge in IV-VI compounds. I. A simple one-dimensional model , 1979 .

[3]  R. Helbig,et al.  Band-Gap Assignment in SnO 2 by Two-Photon Spectroscopy , 1978 .

[4]  M. Stapelbroek,et al.  Exciton structure in the u.v.-absorption edge of tetragonal GeO2 , 1978 .

[5]  V. T. Agekyan Spectroscopic properties of semiconductor crystals with direct forbidden energy gap , 1977 .

[6]  W. Harrison The Physics of Solid State Chemistry , 1977 .

[7]  C. Jouanin,et al.  Band structure and optical properties of magnesium fluoride , 1976 .

[8]  L. Mattheiss Electronic structure of RuO 2 , OsO 2 , and IrO 2 , 1976 .

[9]  I. J. Fritz,et al.  Temperature and pressure dependences of the properties and phase transition in paratellurite (TeO2: Ultrasonic, dielectric and Raman and Brillouin scattering results☆ , 1975 .

[10]  J. Jacquemin,et al.  Band structure and optical properties of intrinsic tetragonal dioxides of groups-IV elements , 1975 .

[11]  S. Pantelides Universal valence bands for rocksalt-type compounds and their connection with those of tetrahedral crystals , 1975 .

[12]  J. Jacquemin,et al.  Reflection spectrum of Sn4+O22- and comparison with its band structure , 1975 .

[13]  C. G. Fonstad,et al.  Thermoabsorption in SnO 2 , 1974 .

[14]  S. Pantelides,et al.  Correlation effects in energy-band theory , 1974 .

[15]  F. Arlinghaus Energy bands in stannic oxide (SnO2) , 1974 .

[16]  G. Stephan,et al.  Optical Anisotropy of MgF, in Its UV Absorption Region , 1973 .

[17]  T. Sagawa,et al.  The optical absorption of MgF2, MgCl2, and MgBr2 in the vicinity of the Mg L‐shell transitions , 1972 .

[18]  Kenneth J. Button,et al.  Determination of the Electron Masses in Stannic Oxide by Submillimeter Cyclotron Resonance , 1971 .

[19]  Naoya Uchida,et al.  Optical Properties of Single-Crystal Paratellurite (TeO2) , 1971 .

[20]  S. Shionoya,et al.  Second Class Exciton Structure in Stannic Oxide , 1971 .

[21]  W. Albers,et al.  Electronic energy bands and optical transitions in tetragonal germanium dioxide , 1971 .

[22]  S. Shionoya,et al.  Zeeman Effect and Symmetry of the Intrinsic Sn O 2 Exciton , 1968 .

[23]  Mme S. Robin,et al.  Properties optiques et spectre electronique du MgF2 et du CaF2 de 10 à 48 eV , 1968 .

[24]  W. Albers,et al.  Irreducible representations of the little groups of D144h , 1968 .

[25]  R. Summitt,et al.  The ultraviolet absorption edge of stannic oxide (SnO2) , 1964 .

[26]  R. G. Wheeler,et al.  Symmetry Properties of Wave Functions in Magnetic Crystals , 1962 .

[27]  J. Leciejewicz The crystal structure of tellurium dioxide. A redetermination by neutron diffraction , 1961 .