Geometric bounds for the eigenvalues

[1]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[2]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[3]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[4]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[5]  Mark Jerrum,et al.  Fast Uniform Generation of Regular Graphs , 1990, Theor. Comput. Sci..

[6]  Ronald L. Graham,et al.  Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions , 1990, Random Struct. Algorithms.

[7]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[8]  D. Stroock,et al.  Simulated annealing via Sobolev inequalities , 1988 .

[9]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[10]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[11]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[12]  D. Aldous On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing , 1987, Probability in the Engineering and Informational Sciences.

[13]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[14]  N. Alon Eigenvalues and expanders , 1986, Comb..

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[16]  Uriel G. Rothblum,et al.  Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices , 1985 .

[17]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[18]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[19]  A. Odlyzko,et al.  Bounds for eigenvalues of certain stochastic matrices , 1981 .

[20]  M. Kac Random Walk and the Theory of Brownian Motion , 1947 .

[21]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[22]  P. Diaconis Group representations in probability and statistics , 1988 .

[23]  D. Stanton Orthogonal Polynomials and Chevalley Groups , 1984 .

[24]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[25]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[26]  N. Biggs Algebraic Graph Theory: Regular graphs and line graphs , 1974 .

[27]  M. Fiedler Algebraic connectivity of graphs , 1973 .