Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex.

[1]  R. Cossart,et al.  Step by step: cells with multiple functions in cortical circuit assembly , 2022, Nature Reviews Neuroscience.

[2]  M. Nolan,et al.  Deep entorhinal cortex: from circuit organization to spatial cognition and memory , 2021, Trends in Neurosciences.

[3]  O. Paulsen,et al.  Thalamus mediates neocortical Down state transition via GABAB-receptor-targeting interneurons , 2021, Neuron.

[4]  R. Kempter,et al.  Microcircuits for spatial coding in the medial entorhinal cortex , 2021, Physiological reviews.

[5]  S. Schreiber,et al.  Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning , 2021, Science Advances.

[6]  Staci A. Sorensen,et al.  Local Connectivity and Synaptic Dynamics in Mouse and Human Neocortex , 2021, bioRxiv.

[7]  B. Rudy,et al.  Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. , 2021, Annual review of neuroscience.

[8]  Richard J. Gardner,et al.  Toroidal topology of population activity in grid cells , 2021, Nature.

[9]  I. Vida,et al.  Parvalbumin Interneurons Are Differentially Connected to Principal Cells in Inhibitory Feedback Microcircuits along the Dorsoventral Axis of the Medial Entorhinal Cortex , 2021, eNeuro.

[10]  Brian R. Lee,et al.  Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.

[11]  Kenneth D. Harris,et al.  Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings , 2020, Science.

[12]  T. Karayannis,et al.  A ‘Marginal’ tale: the development of the neocortical layer 1 , 2020, Current Opinion in Neurobiology.

[13]  Rachel C. Bandler,et al.  Mining the jewels of the cortex’s crowning mystery , 2020, Current Opinion in Neurobiology.

[14]  M. Larkum,et al.  Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices , 2020, Frontiers in Systems Neuroscience.

[15]  Hongkui Zeng,et al.  A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.

[16]  Samuel A. Ocko,et al.  Topography in the Bursting Dynamics of Entorhinal Neurons. , 2020, Cell reports.

[17]  M. Witter,et al.  Neuronal chemo‐architecture of the entorhinal cortex: A comparative review , 2019, The European journal of neuroscience.

[18]  G. Fishell,et al.  Four Unique Interneuron Populations Reside in Neocortical Layer 1 , 2018, The Journal of Neuroscience.

[19]  P. Jonas,et al.  Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus , 2018, Nature Communications.

[20]  B. Lim,et al.  Recurrent circuits within medial entorhinal cortex superficial layers support grid cell firing , 2018, Nature Communications.

[21]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[22]  G. Fishell,et al.  Layer I Interneurons Sharpen Sensory Maps during Neonatal Development , 2018, Neuron.

[23]  M. Witter,et al.  Development of Parvalbumin-Expressing Basket Terminals in Layer II of the Rat Medial Entorhinal Cortex , 2018, eNeuro.

[24]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2018, bioRxiv.

[25]  A. Holtmaat,et al.  Neurogliaform cortical interneurons derive from cells in the preoptic area , 2018, eLife.

[26]  H. Monyer,et al.  Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex , 2018, Proceedings of the National Academy of Sciences.

[27]  M. Moser,et al.  Entorhinal fast-spiking speed cells project to the hippocampus , 2018, Proceedings of the National Academy of Sciences.

[28]  Li I. Zhang,et al.  A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning , 2017, Neuron.

[29]  Luke J. Bogart,et al.  Inhibitory circuit gating of auditory critical period plasticity , 2017, Nature Neuroscience.

[30]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[31]  M. Moser,et al.  Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex , 2017, Cell.

[32]  J. White,et al.  Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons , 2017, eNeuro.

[33]  Yangfan Peng,et al.  Excitatory Microcircuits within Superficial Layers of the Medial Entorhinal Cortex. , 2017, Cell reports.

[34]  Nils Z. Borgesius,et al.  A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II , 2017, Neuron.

[35]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[36]  Wenlian Lu,et al.  Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex , 2016, Nature Communications.

[37]  M. Hasselmo,et al.  Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells , 2016, Cerebral cortex.

[38]  Hannah Monyer,et al.  Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex , 2016, Neuron.

[39]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[40]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[41]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[42]  Xiaolong Jiang,et al.  Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits. , 2015, Cerebral cortex.

[43]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[44]  C. McBain,et al.  Navigating the circuitry of the brain's GPS system: Future challenges for neurophysiologists , 2015, Hippocampus.

[45]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[46]  Xiaolong Jiang,et al.  An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits , 2015, Nature Protocols.

[47]  Matthew F. Nolan,et al.  Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene Expression , 2015, PLoS Comput. Biol..

[48]  Antonio Candela,et al.  GABAergic Projections from the Medial Septum Selectively Inhibit Interneurons in the Medial Entorhinal Cortex , 2014, The Journal of Neuroscience.

[49]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[50]  Hannah Monyer,et al.  Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex , 2014, Nature Neuroscience.

[51]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[52]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[53]  Arnd Roth,et al.  Structured Connectivity in Cerebellar Inhibitory Networks , 2014, Neuron.

[54]  Gero Miesenböck,et al.  Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex , 2014, PLoS biology.

[55]  Sophie Schneiderbauer,et al.  Inhibitory Gradient along the Dorsoventral Axis in the Medial Entorhinal Cortex , 2013, Neuron.

[56]  Matthew E Larkum,et al.  The yin and yang of cortical layer 1 , 2013, Nature Neuroscience.

[57]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[58]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[59]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[60]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[61]  Bert Sakmann,et al.  Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo , 2012, Nature Neuroscience.

[62]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[63]  Eric A. Zilli,et al.  Models of Grid Cell Spatial Firing Published 2005–2011 , 2012, Front. Neural Circuits.

[64]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.

[65]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[66]  James G. Heys,et al.  Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells , 2012, Front. Neural Circuits.

[67]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[68]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[69]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[70]  Ole Paulsen,et al.  Distinct Roles of GABAA and GABAB Receptors in Balancing and Terminating Persistent Cortical Activity , 2009, The Journal of Neuroscience.

[71]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[72]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[73]  Sean M Montgomery,et al.  Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations , 2006, Neuron.

[74]  B. McNaughton,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[75]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[76]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[77]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[78]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[79]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[80]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[81]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[82]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[83]  F. Wouterlood,et al.  Innervation of Entorhinal Principal Cells by Neurons of the Nucleus Reuniens Thalami. Anterograde PHA‐L Tracing Combined with Retrograde Fluorescent Tracing and Intracellular Injection with Lucifer Yellow in the Rat , 1991, The European journal of neuroscience.

[84]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[85]  Menno P. Witter,et al.  Chapter 20 – Hippocampal Formation , 2015 .

[86]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[87]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[88]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[89]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[90]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .