Effective multidimensional resistivity inversion using finite-element techniques
暂无分享,去创建一个
Christopher C. Pain | Cassiano R. E. de Oliveira | Jorg V. Herwanger | M. Worthington | C. D. Oliveira | C. Pain | J. Herwanger | M. H. Worthington
[1] Stephen K. Park,et al. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes , 1991 .
[2] Multidomain Chebyshev spectral method for 3-D dc resistivity modeling , 1996 .
[3] Gerald W. Hohmann,et al. Topographic effects in resistivity and induced-polarization surveys , 1980 .
[4] Christopher M. Bishop,et al. Neural networks for pattern recognition , 1995 .
[5] A. Dey,et al. Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .
[6] K. Spitzer. A 3-D FINITE-DIFFERENCE ALGORITHM FOR DC RESISTIVITY MODELLING USING CONJUGATE GRADIENT METHODS , 1995 .
[7] Loyce M. Adams,et al. An M-Step preconditioned Conjugate Gradient Method for Parallel Computation , 1983, ICPP.
[8] C. Swift,et al. INVERSION OF TWO‐DIMENSIONAL RESISTIVITY AND INDUCED‐POLARIZATION DATA , 1978 .
[9] R. Parker,et al. Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .
[10] Yoshihiro Sugimoto,et al. Shallow high‐resolution 2-D and 3-D electrical crosshole imaging , 1999 .
[11] 2-D Electrical Modeling over Undulated Topography , 1998 .
[12] O. Zienkiewicz,et al. Finite elements and approximation , 1983 .
[13] A. Weller,et al. Monitoring Hydraulic Experiments by Complex Conductivity Tomography , 1997 .
[14] A. Dey,et al. Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .
[15] Fast resistivity/IP inversion using a low‐contrast approximation , 1996 .
[16] Hiromasa Shima,et al. 2-D and 3-D resistivity image reconstruction using crosshole data , 1992 .
[17] J. Nitao,et al. Electrical resistivity tomography of vadose water movement , 1992 .
[18] Douglas W. Oldenburg,et al. 3-D inversion of magnetic data , 1996 .
[19] O. C. Zienkiewicz,et al. The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .
[20] Robert G. Ellis,et al. The pole-pole 3-D Dc-resistivity inverse problem: a conjugategradient approach , 1994 .
[21] Nariida C. Smith,et al. Two-Dimensional DC Resistivity Inversion for Dipole-Dipole Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.
[22] C. C. Pain,et al. A neural network graph partitioning procedure for grid-based domain decomposition , 1999 .
[23] Louis Allaud,et al. Schlumberger: The history of a technique , 1977 .
[24] W. Daily,et al. The effects of noise on Occam's inversion of resistivity tomography data , 1996 .
[25] Jie Zhang,et al. 3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .
[26] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[27] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[28] R. Barker,et al. Practical techniques for 3D resistivity surveys and data inversion1 , 1996 .
[29] Alan C. Tripp,et al. Two-dimensional resistivity inversion , 1984 .
[30] Douglas W. Oldenburg,et al. Inversion of 3-D DC resistivity data using an approximate inverse mapping , 1994 .
[31] A. Binley,et al. Flow pathways in porous media: electrical resistance tomography and dye staining image verification , 1996 .
[32] A. Weller,et al. Induced‐polarization modelling using complex electrical conductivities , 1996 .