Charge/discharge performances of glyme–lithium salt equimolar complex electrolyte for lithium secondary batteries

[1]  M. Watanabe,et al.  Correlation between Battery Performance and Lithium Ion Diffusion in Glyme–Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes , 2012 .

[2]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[3]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[4]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[5]  Hajime Miyashiro,et al.  Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-ion Secondary Battery Electrolyte , 2011 .

[6]  Kazuki Yoshida,et al.  New glyme–cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries , 2010 .

[7]  M. Watanabe,et al.  Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids , 2010 .

[8]  M. Armand,et al.  Building better batteries , 2008, Nature.

[9]  Yo Kobayashi,et al.  Comparative Study of Lithium Secondary Batteries Using Nonvolatile Safety Electrolytes , 2007 .

[10]  Yo Kobayashi,et al.  Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries Effects of Lithium Salt Concentration , 2007 .

[11]  Akira Usami,et al.  Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. , 2006, The journal of physical chemistry. B.

[12]  Joon-Ho Shin,et al.  PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries , 2005 .

[13]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[14]  Yo Kobayashi,et al.  Fabrication of High-Voltage, High-Capacity All-Solid-State Lithium Polymer Secondary Batteries by Application of the Polymer Electrolyte/Inorganic Electrolyte Composite Concept , 2005 .

[15]  S. Seki,et al.  Effect of binder polymer structures used in composite cathodes on interfacial charge transfer processes in lithium polymer batteries , 2004 .

[16]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[17]  D. Macfarlane,et al.  The zwitterion effect in high-conductivity polyelectrolyte materials , 2004, Nature materials.

[18]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[19]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[20]  T. Sakai,et al.  Liquid-free rechargeable Li polymer battery , 2001 .

[21]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[22]  Toshiyuki Watanabe,et al.  High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains , 1999 .

[23]  H. Tamura,et al.  XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts , 1995 .