Decoding of Cyclic Codes Over

We give a simple decoding algorithm to decode linear cyclic codes of odd length over the ring , where A spectral representation of the cyclic codes over is given and a BCH-like bound is given for the Lee distance of the codes. The ring shares many properties of and and admits a linear "Gray map."

[1]  Mohammad Umar Siddiqi,et al.  Optimal Large Linear Complexity Frequency Hopping Patterns Derived from Polynomial Residue Class Rings , 1998, IEEE Trans. Inf. Theory.

[2]  Mohammad Umar Siddiqi,et al.  Transform domain characterization of cyclic codes overZm , 1994, Applicable Algebra in Engineering, Communication and Computing.

[3]  A. Robert Calderbank,et al.  Cyclic codes over Z4, locator polynomials, and Newton's identities , 1996, IEEE Trans. Inf. Theory.

[4]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[5]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  R. Blahut Theory and practice of error control codes , 1983 .

[8]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[9]  P. Udaya,et al.  Cyclic codes over a linear companion of Z/sub 4/ , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  C. L. Liu,et al.  A construction scheme for linear and non-linear codes , 1973, Discret. Math..

[11]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[12]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[13]  Alexis Bonnecaze,et al.  Cyclic Codes and Self-Dual Codes Over , 1999 .