Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery

The Na0.44MnO2 structure is a promising cathode material for sodium ion batteries due to a high capacity (∼130 mAh/g) and good cycle performance. In this work, we present the results of density functional theory (DFT) calculations on the structural and electrochemical properties of Na0.44MnO2, combined with experiments. Seven intermediate phases and the two-phase reactions among them were found, where the calculated voltage profile agreed well with experiments. We found that the S-shaped tunnel is not empty in the deintercalated Na0.22MnO2 structure but has a partial occupancy of sodium ions. The new sodium sites were found in a limited sodium composition range (x = 0.44–0.55) which is attributed to the electrostatic interactions between sodium ions and manganese atoms. The asymmetric lattice evolution in Na0.44MnO2 as a function of sodium insertion/deinsertion is shown to be due to the Jahn–Teller effects. On the basis of this interpretation, we suggest that the Cr substitution will reduce the volume cha...

[1]  J. Dahn,et al.  Layered Li‐Mn‐Oxide with the O2 Structure: A Cathode Material for Li‐Ion Cells Which Does Not Convert to Spinel , 1999 .

[2]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 4. van der Waals Parameters of Alkali Metal Cations and Halide Anions , 1997 .

[3]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[4]  Anton Van der Ven,et al.  Ab initio study of sodium ordering in Na{sub 0.75}CoOâ and its relation to Co{sup 3+}/Co{sup 4+} charge ordering , 2005 .

[5]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[6]  M. Green,et al.  Coupled commensurate cation and charge modulation in the tunneled structure, Na(0.40(2))MnO(2). , 2011, Journal of the American Chemical Society.

[7]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[8]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[9]  Thomas J. Richardson,et al.  Lithium insertion processes of orthorhombic Na{sub x}MnO{sub 2}-based electrode materials , 1996 .

[10]  A. Manthiram,et al.  Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides , 2004 .

[11]  Khiem Trad,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .

[12]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[13]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[14]  M. Doeff,et al.  Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2 , 2004 .

[15]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[16]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[17]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[18]  W. Mumme The structure of Na4Mn4Ti5O18 , 1968 .

[19]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[20]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[21]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[22]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[23]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[24]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[25]  P. Bruce,et al.  Li0.44MnO2: an intercalation electrode with a tunnel structure and excellent cyclability , 1998 .

[26]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[27]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[28]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[29]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[30]  Qiliang Li,et al.  The tunnel manganese oxide Na4.32Mn9O18: a new Na+ site discovered by single-crystal X-ray diffraction. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[31]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[32]  K. Kang,et al.  Combined First‐Principle Calculations and Experimental Study on Multi‐Component Olivine Cathode for Lithium Rechargeable Batteries , 2009 .

[33]  B. Hammer,et al.  DFT+U study of defects in bulk rutile TiO(2). , 2010, The Journal of chemical physics.

[34]  G. Ceder,et al.  Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. , 2004, Chemical reviews.

[35]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[36]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[37]  Geoffrey D. Price,et al.  Role of the crystal-field theory in determining the structures of spinels , 1982 .

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[40]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[41]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[42]  M. Doeff,et al.  Electrode Materials with the Na0.44MnO2 Structure: Effect ofTitanium Substitution on Physical and Electrochemical Properties , 2008 .

[43]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .