On the Size of RVE in Finite Elasticity of Random Composites

This paper presents a quantitative study of the size of representative volume element (RVE) of random matrix-inclusion composites based on a scale-dependent homogenization method. In particular, mesoscale bounds defined under essential or natural boundary conditions are computed for several nonlinear elastic, planar composites, in which the matrix and inclusions differ not only in their material parameters but also in their strain energy function representations. Various combinations of matrix and inclusion phases described by either neo-Hookean or Ogden function are examined, and these are compared to those of linear elastic types.

[1]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[2]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[4]  Christian Soize Random-field model for the elasticity tensor of anisotropic random media , 2004, Comptes Rendus Mécanique.

[5]  S. Wong,et al.  Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 6,6/polypropylene blendsPart II. Toughening mechanisms , 2000 .

[6]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[7]  M. Schneider,et al.  Toughening of polystyrene by natural rubber-based composite particles: Part I Impact reinforcement by PMMA and PS grafted core-shell particles , 1997 .

[8]  Peter Wriggers,et al.  Homogenisation of Microheterogeneous Materials Considering Interfacial Delamination at Finite Strains , 2003 .

[9]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[10]  W. Becker,et al.  A probabilistic approach to the numerical homogenization of irregular solid foams in the finite strain regime , 2005 .

[11]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[12]  Ivonne Sgura,et al.  Fitting hyperelastic models to experimental data , 2004 .

[13]  S. Hazanov,et al.  On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume , 1999 .

[14]  On the sensitivity of homogenized material responses at infinitesimal and finite strains , 2000 .

[15]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[16]  Karam Sab,et al.  Aggregate composites: a contact based modeling , 2005 .

[17]  W. Drugan Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites , 2000 .

[18]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials. I. Fundamental concepts , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[20]  M. Ostoja-Starzewski,et al.  On the Size of Representative Volume Element in Elastic, Plastic, Thermoelastic and Permeable Random Microstructures , 2007 .

[21]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[22]  S. Torquato Random Heterogeneous Materials , 2002 .

[23]  Karam Sab,et al.  Periodization of random media and representative volume element size for linear composites , 2005 .

[24]  J. Karger‐Kocsis,et al.  Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations , 2004 .

[25]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[26]  M. Schneider,et al.  Toughening of polystyrene by natural rubber-based composite particles: Part III Fracture mechanisms , 1997 .

[27]  M. Ostoja-Starzewski,et al.  Mesoscale bounds in finite elasticity and thermoelasticity of random composites , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  S. Wong,et al.  Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 6,6/polypropylene blends : 1. Structure -property relationships , 1999 .

[29]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[30]  R. Legras,et al.  Particle-in-particle morphology in reactively compatibilized poly(butylene terephthalate)/epoxide-containing rubber blends , 2004 .

[31]  Z. Ren,et al.  Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals , 2004 .

[32]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[33]  R. Shield,et al.  Variational principles in finite elastostatics , 1980 .

[34]  P. P. Castañeda,et al.  The overall constitutive behaviour of nonlinearly elastic composites , 1989 .

[35]  Martin Ostoja-Starzewski,et al.  Scale effects in plasticity of random media: status and challenges , 2005 .

[36]  Ray W. Ogden,et al.  Extremum principles in non-linear elasticity and their application to composites—I: Theory , 1978 .

[37]  Peter Wriggers,et al.  Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .

[38]  V. Kouznetsova,et al.  Size of a representative volume element in a second-order computational homogenization framework , 2004 .

[39]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .

[40]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[41]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .